• Title/Summary/Keyword: Qualitative Diagnosis

Search Result 216, Processing Time 0.021 seconds

Synthesis of the Fault-Causality Graph Model for Fault Diagnosis in Chemical Processes Based On Role-Behavior Modeling (역할-거동 모델링에 기반한 화학공정 이상 진단을 위한 이상-인과 그래프 모델의 합성)

  • 이동언;어수영;윤인섭
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.450-457
    • /
    • 2004
  • In this research, the automatic synthesis of knowledge models is proposed. which are the basis of the methods using qualitative models adapted widely in fault diagnosis and hazard evaluation of chemical processes. To provide an easy and fast way to construct accurate causal model of the target process, the Role-Behavior modeling method is developed to represent the knowledge of modularized process units. In this modeling method, Fault-Behavior model and Structure-Role model present the relationship of the internal behaviors and faults in the process units and the relationship between process units respectively. Through the multiple modeling techniques, the knowledge is separated into what is independent of process and dependent on process to provide the extensibility and portability in model building, and possibility in the automatic synthesis. By taking advantage of the Role-Behavior Model, an algorithm is proposed to synthesize the plant-wide causal model, Fault-Causality Graph (FCG) from specific Fault-Behavior models of the each unit process, which are derived from generic Fault-Behavior models and Structure-Role model. To validate the proposed modeling method and algorithm, a system for building FCG model is developed on G2, an expert system development tool. Case study such as CSTR with recycle using the developed system showed that the proposed method and algorithm were remarkably effective in synthesizing the causal knowledge models for diagnosis of chemical processes.

Social Perceptions of Breast Cancer by Women Still Undergoing or Having Completed Therapy: a Qualitative Study

  • Mermer, Gulengul;Nazli, Aylin;Ceber, Esin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.503-510
    • /
    • 2016
  • Background: Diagnosis and treatment of breast cancer is a crisis situation which effects women's lives physically, socially and spiritually. Investigating women's perceptions of this disease is crucially important for treatment decisions. We therefore determined social perceptions and interpretations of women diagnosed with breast cancer during therapy and in the post-treatment period. Materials and Methods: In the study, focus group and in-depth interviews were made with women still undergoing or having completed breast cancer treatment. Some 25 women were included in the research. Content analysis was used in the analysis of the qualitative data obtained after the focus group and in-depth interviews. Results: Some of the women demonstrated positive perceptions towards accepting the disease, whereas others had emotions such as rebellion and anger. The loss of a breast is important with different interpretations. Conclusions: Women's acceptance or rebellion against the disease varies within their social interpretations after the treatment, as at the stage of diagnosis/treatment. All stages of breast cancer negatively affect the social life of the affected individual as much as her body. Nurses assume crucial roles in coping with these negative effects. Thus, it is necessary to know, and sociologically interpret, what is indicated by the information on what the negative effects concerning the disease are and how they are interpreted.

Model-based Fault Diagnosis Using Quantized Vibration Signals (양자화된 진동신호를 이용한 모델기반 고장진단)

  • Kim, Do-Hyun;Choi, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.279-284
    • /
    • 2005
  • Knowledge based fault diagnosis has a limitation in determining the cause and scheme for the fault, because it detects faults from signal pattern only Therefore, model-based fault diagnosis is requested to determine the fault by analyzing output of the equipment from its dynamic model. This research shows a method how to devise the automaton of system as a model for normal and faulty condition through the reduction of handling data by quantization of vibration signals and the example which is concerning to the bearing of ATM. The developed model based fault diagnosis was applied to detect the faulty bearing of ATM, which results.

  • PDF

A Diagnosis and Assessment Methodology for Enterprise CRM Strategy (전사적 CRM 전략의 진단 및 평가 방법론 개발)

  • Kim, Hyung-Su;Jeong, Han-Geun
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.37 no.3
    • /
    • pp.23-37
    • /
    • 2012
  • As Customer Relationship Management (CRM) strategy is becoming a core competence more recently, many companies want a reliable CRM assessment system which enables measuring and diagnosing corporate customer strategies for building an optimized CRM strategy. However, there has been short of researches on developing the CRM diagnosis methodology that is directly applicable to real practices. Drawing upon the theoretical framework of CRM scorecard, we developed and suggested a corporate CRM diagnosis methodology that can systematically understand and assess the corporate CRM capability and performance, guiding their future directions. Companies can search the important but weak areas among various CRM strategy subjects through the proposed diagnostic procedures. This framework has a hierarchical structure that has four evaluative domains each of which has several evaluative subjects consisting of many evaluative themes: the score of upper factor is the weighted average of its subordinate factor scores. And the score of each evaluative theme is the weighted average of quantitative and qualitative evaluative indexes. Quantitative indexes are calculated by analyzing customer and sales data and qualitative ones are derived from survey data. Each evaluative index has more than one measure and its score can be derived from its own formula consisting of the measures. To prove the concept, we applied this framework to a real company and concluded that it might be appropriate to understand the corporate CRM strategy situation, find the pain points, and resolve them for better CRM implementation.

IFS DECISION MAKING PROCESSES TO DIFFERENTIAL DIAGNOSIS OF HEADACHE

  • Kim, Soon-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.264-267
    • /
    • 1998
  • We are dealing with the preliminary diagnosis from the information of headache interview chart. We quantify the qualitative information based on the interview chart by dual scaling. Prototype of fuzzy diagnostic sets and the neural linear regression methods are established with these quantified data, These new methods can be used to classify new patient's tone of diseases with certain degrees of belief and its concerned symptoms. We call these procedures as neural Fuzzy Differential Diagnosis of Headache (NFDDH-1). Also we investigate three measures to medical diagnosis, where relations between symptoms and diseases are described by intutionistic fuzzy set (IFS) data. Two measures are described by nin-max and max-min IFS operators, respectively. Another measure is the similarity degree, i.e., IFS distance between patient's symptoms and prototypes of diseases. We consider some reasonable criteria for three measures in order to determine the label of headache, We will establish hree measures in NFDDH-2 and combine two packages as NFDDH

  • PDF

Implementation of Automated Motor Fault Diagnosis System Using GA-based Fuzzy Model (유전 알고리즘기반 퍼지 모델을 이용한 모터 고장 진단 자동화 시스템의 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.24-26
    • /
    • 2005
  • At present, KS-1000 which is one of a commercial measurement instrument for motor fault diagnosis has been used in industrial field. The measurement system of KS-1000 is composed of three part : harmonic acquisition, signal processing by KS-1000 algorithm, diagnosis for motor fault. First of all, voltage signal taken from harmonic sensor is analysed for frequency by KS-1000 algorithm. Then, based on the result values of analysis skilled expert makes a judgment about whether motor system is the abnormality or degradation state. But the expert system such a motor fault diagnosis is very difficult to bring the expectable results by mathematical modeling due to the complexity of judgment process. In this reason, we propose an automation system using fuzzy model based on genetic algorithm(GA) that builded a qualitative model of a system without priori knowledge about a system provided numerical input output data.

  • PDF

An Interpretable Bearing Fault Diagnosis Model Based on Hierarchical Belief Rule Base

  • Boying Zhao;Yuanyuan Qu;Mengliang Mu;Bing Xu;Wei He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1186-1207
    • /
    • 2024
  • Bearings are one of the main components of mechanical equipment and one of the primary components prone to faults. Therefore, conducting fault diagnosis on bearings is a key issue in mechanical equipment research. Belief rule base (BRB) is essentially an expert system that effectively integrates qualitative and quantitative information, demonstrating excellent performance in fault diagnosis. However, class imbalance often occurs in the diagnosis task, which poses challenges to the diagnosis. Models with interpretability can enhance decision-makers' trust in the output results. However, the randomness in the optimization process can undermine interpretability, thereby reducing the level of trustworthiness in the results. Therefore, a hierarchical BRB model based on extreme gradient boosting (XGBoost) feature selection with interpretability (HFS-IBRB) is proposed in this paper. Utilizing a main BRB alongside multiple sub-BRBs allows for the conversion of a multi-classification challenge into several distinct binary classification tasks, thereby leading to enhanced accuracy. By incorporating interpretability constraints into the model, interpretability is effectively ensured. Finally, the case study of the actual dataset of bearing fault diagnosis demonstrates the ability of the HFS-IBRB model to perform accurate and interpretable diagnosis.

A Study on the Development of Robust Fault Diagnostic System Based on Neuro-Fuzzy Scheme

  • Kim, Sung-Ho;Lee, S-Sang-Yoon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • FCM(Fuzzy Cognitive Map) is proposed for representing causal reasoning. Its structure allows systematic causal reasoning through a forward inference. By using the FCM, authors have proposed FCM-based fault diagnostic algorithm. However, it can offer multiple interpretations for a single fault. In process engineering, as experience accumulated, some form of quantitative process knowledge is available. If this information can be integrated into the FCM-based fault diagnosis, the diagnostic resolution can be further improved. The purpose of this paper is to propose an enhanced FCM-based fault diagnostic scheme. Firstly, the membership function of fuzzy set theory is used to integrate quantitative knowledge into the FCM-based diagnostic scheme. Secondly, modified TAM recall procedure is proposed. Considering that the integration of quantitative knowledge into FCM-based diagnosis requires a great deal of engineering efforts, thirdly, an automated procedure for fusing the quantitative knowledge into FCM-based diagnosis is proposed by utilizing self-learning feature of neural network. Finally, the proposed diagnostic scheme has been tested by simulation on the two-tank system.

  • PDF

Principal Component Analysis Based Method for Effective Fault Diagnosis (주성분 분석을 이용한 효과적인 화학공정의 이상진단 모델 개발)

  • Park, Jae Yeon;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.73-77
    • /
    • 2014
  • In the field of fault diagnosis, the deviations from normal operating conditions are monitored to identify the type of faults and find their root causes. One of the most representative methods is the statistical approaches, due to a large amount of advantages. However, ambiguous diagnosis results can be generated according to fault magnitudes, even if the same fault occurs. To tackle this issue, this work proposes principal component analysis (PCA) based method with qualitative information. The PCA model is constructed under normal operation data and the residuals from faulty conditions are calculated. The significant changes of these residuals are recorded to make the information for identifying the types of fault. This model can be employed easily and the tasks for building are smaller than these of other common approaches. The efficacy of the proposed model is illustrated in Tennessee Eastman process.

Fault diagnosis using FCM and TAM recall process (FCM과 TAM recall 과정을 이용한 고장진단)

  • 이기상;박태홍;정원석;최낙원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.233-238
    • /
    • 1993
  • In this paper, two diagnosis algorithms using the simple fuzzy, cognitive map (FCM) that is an useful qualitative model are proposed. The first basic algorithm is considered as a simple transition of Shiozaki's signed directed graph approach to FCM framework. And the second one is an extended version of the basic algorithm. In the extension, three important concepts, modified temporal associative memory (TAM) recall, temporal pattern matching algorithm and hierarchical decomposition are adopted. As the resultant diagnosis scheme takes short computation time, it can be used for on-line fault diagnosis of large scale and complex processes that conventional diagnosis methods cannot be applied. The diagnosis system can be trained by the basic algorithm and generates FCM model for every experienced process fault. In on-line application, the self-generated fault model FCM generates predicted pattern sequences, which are compared with observed pattern sequences to declare the origin of fault. In practical case, observed pattern sequences depend on transport time. So if predicted pattern sequences are different from observed ones, the time weighted FCM with transport delay can be used to generate predicted ones. The fault diagnosis procedure can be completed during the actual propagation since pattern sequences of tvo different faults do not coincide in general.

  • PDF