• Title/Summary/Keyword: Quadruped walking robots

Search Result 38, Processing Time 0.153 seconds

Gait Generation for Quadruped Robots Using Body Sways (몸체 스웨이를 이용한 4족 로봇의 걸음새 생성)

  • Jung, Hak-Sang;Kim, Guk-Hwa;Choi, Yoon-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2012
  • In this paper, we propose a gait generation method for quadruped robots using the xz-axis sway of the quadruped robot, which minimizes the shake of the quadruped robot and maximizes the stability margin. In the proposed method, the gait is generated based on wave gaits and the stability analysis uses the body tilt information of the quadruped robot according to the leg's height of leg. In addition, to reduce the impact on the body caused by the z-axis sway while walking, the proposed method generates the smooth walking movement trajectory with less impact by using Fourier series. Finally, to verify the applicability and effectiveness of the proposed method, we carry out the computer simulations and the real walking experiments with the implemented quadruped robot.

Kinematic Analysis of the Quadruped Robot Using Computer Graphics (컴퓨터 그래픽스를 이용한 사각보행로보트의 기구적 해석)

  • Choi, Byoung-Wook;Lim, Joon-Hong;Chung, Myung-Jin;Bien, Zeung-Nam
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1173-1182
    • /
    • 1988
  • The stability, energetic efficiency and walking volume are affected by the geometric structure of legs of a walking robot. A quadruped walking robot is considered to have large stability margin among the walking robots and pantograph leg permits large walk stroke and mutually independent vertical and horizontal movements, but the kinematic characteristics are difficult to analyze. Graphical method may be useful to characterize three dimensional legged motion of the pantograph mechanism. We present the modelling method for three different quadruped robots with pantograph legs that have different joints mechanism. The modeled robots are animated by a path that is planned with respect to the center of body. In particular, graphical animation incorporates leg control to rotation and side walking and uses the window of Sun-3 system for displaying joint information.

  • PDF

Study on the Transformable Quadruped Robot with Docking Module (변형과 결합 가능한 4족 로봇에 대한 연구)

  • Kim, Young-Min;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.236-241
    • /
    • 2015
  • This paper presents a study on transformable multiple quadruped robots by docking between robots and waist joints. This robot is able to go on a variety of angles because of mecanum wheels. It is also a hybrid design which allows robot use legs to overcome obstacles on complex terrains and wheels to move on flat ground. The robot is applied kinematics of mecanum wheels and walking, and its walking is based on specific patterns. Docking module is located in front and backside of robot, docking algorithm is suggested and fulfilled for docking between 2 robots. A waist joint is at the center of robot body for transformation and after docking and transformation, robot can activate new functions that carry something.

Experimental Study on Motion Generation and Control of Quadruped Robot (4 족 견마형 로봇의 동작 생성 및 제어에 관한 실험적 연구)

  • Ko, Kwang-Jin;Yu, Seung-Nam;Lee, Hee-Don;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.843-848
    • /
    • 2007
  • Quadruped robot is very useful mechanism for a various area. Recently, home entertainment and military robots adapted quadruped platform and useful function have been introduced. Our goal is the development of quadruped robot locomotion for any type of ground included to sloping one and irregular terrain. This paper, as a first step, deals with design and construction of quadruped robot walking on the flat ground. The most important factor of quadruped robot is stability of locomotion. At first, we introduce the developed quadruped robot based on dynamic simulation and experimental study of general gait algorithm. Finally, propose unique locomotion proper to our mechanism. Future work of this study is the performance test and analysis on the ground of various conditions and proposes the improved mechanism and gait algorithm.

  • PDF

A Study on Turning Gait for a Quadruped Walking Robot (사각 보행로보트의 회전 걸음새에 관한 연구)

  • ;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.11
    • /
    • pp.886-896
    • /
    • 1991
  • In this paper a new turning gait is proposed for a quadruped walking robot. The proposed scheme makes it possible to control the translation and orientation of the walking robot simultaneously. At first the feasible leg sequences which can guarantee a positive longitudinal gait stability margin for each direction of movement are found. A method for finding the lifting time of each leg of a feasible leg sequince and selecting an optimal gait among feasible gaits is then suggested. The proposed gait can be appled to control the posture of walking robots and to generate an optimal gait for a desired movement of translation and rotation of the walking robot systematically.

  • PDF

Fault Tolerant Gaits of Quadruped Robots for Locked Joint Failures (사각보행로봇의 관절고착고장을 위한 내고장성 걸음새)

  • 양정민;김종환
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.707-711
    • /
    • 1999
  • In this paper, an algorithm of fault tolerant gaits for a quadruped robot is proposed for the purpose of tolerating a locked joint failure. The robot can continue its walking after a locked failure occurs to a joint of a leg by the proposed algorithm. In particular, a periodic gait is proposed as a special form of the proposed algorithm and its existence and efficiency are analytically proven.

  • PDF

Obstacle Avoidance of Quadruped Robots with Consideration to the Order of Swing Leg

  • Yamaguchi, Tomohiro;Watanabe, Keigo;Izumi, Kiyotaka;Kiguchi, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.645-650
    • /
    • 2003
  • Legged robots can avoid an obstacle by crawling-over or striding, according to the obstacle’s nature and the current state of the robot. Thus, it can be observed that the mobility efficiency to reach a destination is improved by such action. Moreover, if robots have many legs like 4-legged or 6-legged types, then the robot movement range is affected by the order of swing leg. In this paper, the avoidance action of a quadruped robot is generated by a neural network (NN) whose inputs are information on the position of the destination, the obstacle configuration and the robot's self-state. To realize a free gait in static walking, the order of swing leg is determined using an another NN whose inputs are the amount of movements and the robot’s self-state. The design parameter of the latter NN is adjusted by using genetic algorithm (GA).

  • PDF

The Motion Control of a Quadruped Working Robot Using Wireless Sensor Network (무선 센서 네트워크가 탑재된 사족 보행로봇 제어)

  • Seo, Kyu-Tae;Kim, Ki-Woo;Sim, Jae-Yang;Oh, Jun-Young;Lim, Sung-Duk;Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.499-501
    • /
    • 2004
  • This paper deals with the implementation of a quadruped working robot using wireless sensor network with TinyOS. It is often required to install real time OS and wireless network in the mobile robot field since robots work alone without human intervention and also exchanging their information between robot systems. The suggested controller utilizes a built-in wireless network OS and makes the variance action related with human-kindly motions for a quadruped walking robot. In addition, a kinematics analysis of its structure and control architecture of robot system is suggested and verified the usefulness through the real experiment.

  • PDF

Discontinuous Zigzag Gait Control to Increase the Stability During Walking in Slope (경사면 보행 안정성 향상을 위한 불연속 걸음새 제어)

  • Park, Se-Hoon;Lee, Yun-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.9
    • /
    • pp.959-966
    • /
    • 2009
  • An essential consideration when analyzing the gait of walking robots is their ability to maintain stability during walking. Therefore, this study proposes a vertical waist-jointed walking robot and gait algorithm to increase the gait stability margin while walking on the slope. First, the energy stability margin is compared according to the posture of the walking motion on slope. Next, a vertical waist-jointed walking robot is modeled to analyze the stability margin in given assumption. We describe new parameters, joint angle and position of a vertical waist-joint to get COG (center of gravity of a body) in walking. Finally, we prove the superiority of the proposed gait algorithm using simulation and conclude the results.