• 제목/요약/키워드: Quadriceps exercise

검색결과 150건 처리시간 0.025초

하반신 마비환자의 FES 독립보행을 위한 근육 강화 프로그램 (FES Exercise Program for Independent Paraplegic Walking)

  • 강선화;강곤;최현주;김종문;정순열;정진상
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권1호
    • /
    • pp.69-80
    • /
    • 1998
  • 본 연구에서는 엑서사이즈 프로그램이 FES를 이용한 하반신 마비환자의 일어서기 및 보행에 미치는 영향을 고찰하였으며, 또한 주요 다리근육들의 전기자극에 대한 수축특성과 피로특성에 주안점을 두었다. 정상인 10명과 완전 하반신 마비환자 4명의 대퇴사두근에 연속적 혹은 간헐적으로 전기자극을 가하였고, 자극주파수는 20Hz와 80Hz로 하였다. 또 근육의 길이에 따른 피로현상을 살펴보기 위하여 무릎의 각도를 90$^{\circ}$와 150$^{\circ}$로 각각 고정한 뒤 무릎신근 토크를 측정하였다. 그 결과를 바탕으로 남자 하반신 마비환자의 대퇴사두근과 장딴지근에 지난 2년간 FES엑서사이즈를 시행하였다. 무릎신근의 근력이 체중을 지지하기에 충분하다고 판단되었을 때 FES 일어서기를 시작하였으며, 자세교환 연습을 거친 뒤 평행봉 혹은 워커를 잡고 정전압 자극기와 표면전극을 사용한 4 또는 6채널 자극으로 보행하도록 하였다. 마비된 근육은 정상인과는 반대로 최적길이 부근에서 상대적으로 급격한 피로를 나타내었고, 저주와 자극과 간헐 자극이 피로를 지연시키는 것을 확인할 수 있었다. 본 실험에 참가한 환자는 FES 엑서사이즈 프로그램을 실시한 결과, 근력이 초기의 10배 정도로 증가하였고, 피로지수는 초기의 절반 정도로 감소하였으며, 엑서사이즈 횟수를 매주 6일에서 7일로 바꾼 후 근력이 눈에 띄게 향상되었다. 환자 자신의 잔존능력도 향상되어 양쪽 무릎을 10cm정도 들어올릴 수 있게 됨으로써 보행시 스윙 단계에서 이 능력을 최대한 활용할 수 있었다. 현재 환자는 워커를 잡고 스스로 자극기의 스위치를 조작하면서 4채널 자극에 의하여 10m/min의 속도로 최대 약 2분 40초의 보행이 가능하다.

  • PDF

스쿼트 동작 시 발뒤꿈치 보조물 경사각에 따른 하지근과 척추기립근의 근육활동 비교 (Effect of Different Heel Plates on Muscle Activities During the Squat)

  • 채원식;정현경;장재익
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.113-121
    • /
    • 2007
  • The purpose of this study was to determine the effect of three different plates($0^{\circ}$, $10^{\circ$}, $20^{\circ}$)under heels on the lower limb muscles and erector spinae during squat exercise. Ten high school korean traditional wrestling players(age: $18.5{\pm}0.7$, weight: $1972.2{\pm}128.5N$, height: $177.8{\pm}6.0cm$, weight of barbell: $1004.5{\pm}132.4N$) performed squat exercise using three different tilting plates under heels at a cadence of 40beats/sec with 80% one repetition maximum load. Surface electrodes were placed on the participants' left and right erector spinae, and rectus femoris, vastus medialis, vastus lateralis, tibialis anterior, biceps femoris, medial gastrocnemius, and lateral gastrocnemius in the right lower extremity. One S-VHS camcorder(Panasonic AG456, 60fields/s) was placed 10m to the side of the participant. To synchronize the video and EMG data, a synchronization unit was used for this study. Average and Peak IEMG values were determined for each participant. For each variable, a one-way analysis of variance was used to determine whether there were significant differences among three different tilting plates under heels. When a significant difference was found in plates type, post hoc analyses were performed using the Tukey procedure. A confidence level of p<.05 was used to determine statistical significance. As a result of this study, maximum nEMG values of the tibialis anterior in $0^{\circ}$ plates was significantly higher than the corresponding values for the other plates during the knee extension. This increased activation in the tibialis anterior muscle indicates an increase in displacement of center of gravity of body. It is very likely that additional muscle activation are needed to stop the forward and backward movement. The results also showed that muscular activities of quadriceps femoris and erector spinae were decreased with increasing angle of plates. This suggests that increasing angle of plate may help to sustain the balance and posture of squat exercise. It is considered that very few significant differences were found among three different plates($0^{\circ}$, $10^{\circ}$, $20^{\circ}$) since elite players with much experience in squat exercise, were chosen as a participant of this study. In order to obtain meaningful results regarding the tilting angle of heel plates in squat exercise, kinetic and 3D kinematic analysis will be needed in the future study.

내측 사선 광근에 대한 EMG Biofeedback 훈련과 테이핑 적용이 슬개골 부정렬 환자의 기능향상에 미치는 효과 (Effect of EMG Biofeedback Training and Taping on Vastus Medialis Oblique for Function Improvement of Patient with Patella Malalignment)

  • 김동연;김수현;임영은;이동걸;김태열
    • The Journal of Korean Physical Therapy
    • /
    • 제20권3호
    • /
    • pp.35-43
    • /
    • 2008
  • Purpose: We investigated the effect of isometric resistance exercise on the vastus medialis oblique muscle with inelastic tape and EMG biofeedback training applied to the patello-femoral joints of patients with patella malalignment. Methods: The 39 elderly subjects that had patella malalignment but no neuromuscular disorders were divided into a control group, taping group, and EMG biofeedback training group. Evaluations of function improvement performed before and after the treatment, as well as 4 weeks after treatment. Results: Change in pain in the knee joint were significantly different among groups (p<0.05). Maximum voluntary isometric contractility in the quadriceps muscle was significantly in the EMG biofeedback group (p<0.001). The WOMAC (Western Ontairo & McMaster Questionnaire) index showed a significant change (p<0.05) in pain, function, and total score. Taping and EMG biofeedback training showed a lasting effect until measurement 4 weeks after treatment. SF-36 (Medical outcome short form-36), which assesses the quality of life, did not significantly change. Conclusion: In osteoarthritis patients with a loss of patello-femoral joint function, isometric resistance exercise of the vastus medialis oblique muscle with taping seems effective.

  • PDF

통제된 한다리 스쿼트 동작시 슬개대퇴동통증후군 환자의 중간볼기근과 넙다리네갈래근에서 나타나는 근활성도와 근력 및 무릎 외반각도의 남녀 비교 (Gender Comparison of Muscle Activity and Strength in Gluteus Medius and Quadriceps and Knee Valgus Angle During Controlled Single-Leg Squat in Individuals With Patellar Femoral Pain Syndrome)

  • 윤태림;김기송
    • 한국전문물리치료학회지
    • /
    • 제23권1호
    • /
    • pp.11-19
    • /
    • 2016
  • Background: Investigation in gender differences of kinetics and kinematics for individuals with patellar femoral pain syndrome (PFPS) was not sufficiently performed. Objects: The purpose of this study is that whether there is a difference depending on gender from muscle activity and strength and knee valgus angle during controlled single-leg squat which is widely used as clinical movement test for the patient with PFPS. Methods: 20 young adults (10 men, $20.0\pm}2.1$years; 10 women, $20.4{\pm}2.1$years) with PFPS were voluntarily recruited in this study. Muscle activity and strength and knee valgus angle were collected during single-leg squat. Independent t-test and Mann-Whitney test were used to compare the differences between groups of male and female. Results: Rectus femoris (t=-2.204, p=.041) and vastus medialis oblique (t=-2.151, p=.045) muscle activity of women were significantly higher than male group. Normalized muscle strength of hip and knee muscles showed a significant difference between men and women (p<.05). Valgus angle of the knee in women (t=-2.450, p=.025) were increased significantly than men. Conclusion: The therapist would consider the characteristics of these gender differences during performing movement test, exercise, and education for the individuals with PFPS.

스텝 운동 기구를 사용한 운동 시 발의 위치가 하지 근육 활동에 미치는 영향 분석 (Electromyographic Analyses of the effects of different foot positions during exercise on a stair-climbing machine)

  • 채원식
    • 한국운동역학회지
    • /
    • 제15권1호
    • /
    • pp.207-219
    • /
    • 2005
  • The purpose of this study was to determine the effect of the foot rotation on the lower limb muscles. Fourteen subjects performed step-up/step-down at a cadence of 80 beats/min, exercises with the foot neutral, $35^{\circ}$ internally rotated, and $35^{\circ}$ externally rotated, respectively. For each variable, a one-way analysis of variance (ANOVA) was used to determine whether there were significant differences between genders and among the eight types of jump. When a significant difference was found in jump type, post hoc analyses were performed using the Tukey procedure. A confidence level of p < .05 was used to determine statistical significance. The results showed that significant changes in averaged IEMG values occurred with the internal rotation of the foot in the lateral gastrocnemius during the knee extension, and in the semitendinosus during the knee flexion. During the knee extension, however, the internal rotation of the foot produced a significantly lower Averaged IEMG values than the neutral foot position in the medial gastrocnemius. The results also found that the peak IEMG activity of the rectus femoris during the knee extension for the external rotation of the foot was Significantly higher than the corresponding values in the neutral position of the foot, while the intenal rotaion of the foot exhibited a significant difference with the neutral position of the foot in the semitendinosus during the knee flexion. In general, the foot rotation position did not influence the average IEMG and Peak IEMG values of most muscles. The practice of adopting foot rotation to selectively strengthen individual muscles of the lower limb was not supported by this study. The external rotation of the foot produced high muscle activities in the quadriceps during the knee extension. For the knee extension, therefore, maintaining a laterally rotated position should be need for stable and comfortable position.

Effects of Different External Loads on the Activities of the Gluteus Maximus and Biceps Femoris during Prone Hip Extension in Healthy Young Men

  • Bae, Chang-Hwan;Choe, Yu-Won;Kim, Myoung-Kwon
    • 대한물리의학회지
    • /
    • 제15권2호
    • /
    • pp.1-9
    • /
    • 2020
  • PURPOSE: This study examined the effects of different external loads on the muscle activities around the hip during prone hip extension with knee flexion (PHEKF) exercise in healthy young men. METHODS: Sixteen healthy adult males participated in the study. A pressure biofeedback unit was used to provide feedback to the participants during the abdominal drawing-in maneuver (ADIM) with PHEKF. Sandbags (0 kg, 1 kg, 2 kg, and 3 kg) were used to provide external resistance. The quadriceps was contracted to maintain knee flexion 90° against resistance. Each resistance condition using a sandbag weight was given in random order. Surface electromyography (sEMG) was used to measure the electrical activity of the gluteus maximus, biceps femoris, and erector spinae during PHEKF. RESULTS: The muscle activity of the gluteus maximus was highest with the 3 kg resistance and lowest with 0 kg (F = 128.46, P = .00). The muscle activities of the biceps femoris and erector spinae were highest with 0 kg and lowest with 3 kg (F = 29.49, P = .00). The muscle activity rate of the gluteus maximus/biceps femoris was highest with 3 kg and lowest with 0 kg (F = 37.49, P = .00). CONCLUSION: The activity of the gluteus maximus was increased using a higher external weight load during PHEKF, while the activity of the biceps femoris decreased. These findings suggest that an external weight is needed during hip extensor exercise to strengthen the gluteus maximus and inhibit the biceps femoris.

단계별 무릎 재활을 위한 근전도 및 관성센서 피드백 기반 외골격 시스템 개발 (Development of a Knee Exoskeleton for Rehabilitation Based EMG and IMU Sensor Feedback)

  • 김종운;김가을;지영범;이아람;이현주;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권6호
    • /
    • pp.223-229
    • /
    • 2019
  • The number of knee-related disease patients and knee joint surgeries is steadily increasing every year, and for knee rehabilitation training for these knee joint patients, it is necessary to strengthen the muscle of vastus medialis and quadriceps femoris. However, because of the cost and time-consuming difficulties of receiving regular hospital treatment in the course of knee rehabilitation, we developed knee exoskeleton using rapid prototype for knee rehabilitation with feedback from the electromyogram (EMG) and inertia motion unit (IMU) sensor. The modules was built on the basis of EMG and an IMU sensor applied complementary filter, measuring muscle activity in the vastus medialis and the range of joint operation of the knee, and then performing the game based on this measurement. The IMU sensor performed up to 97.2% accuracy in experiments with ten subjects. The functional game contents consisted of an exergaming platform based on EMG and IMU for the real-time monitoring and performance assessment of personalized isometric and isotonic exercises. This study combined EMG and IMU-based functional game with knee rehabilitation training to enable voluntary rehabilitation training by providing immediate feedback to patients through biometric information, thereby enhancing muscle strength efficiency of rehabilitation.

The Comparison of the Gluteus Maximus Activity during Various Prone Hip Extension in Subject with Chronic Low Back Pain

  • Kwon, Yoo-Hun;Cynn, Heon-Seock;Park, Dong-Hwan;Shin, A-Reum;Baik, Seung-Min;Lee, Ji-Hyun
    • 대한물리의학회지
    • /
    • 제14권3호
    • /
    • pp.29-37
    • /
    • 2019
  • PURPOSE: Prone hip extension (PHE) has been used for assessment of lumbo-pelvic movement and strengthening exercise for weakness of the hip joint muscles in patients with chronic low back pain (CLBP). On the other hand, few studies have examined which are the best PHE exercises to activate the gluteus maximus (GM) selectively in physical therapy practice. To aim of this study compared the muscle activity of the GM, rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA) during these four different prone hip extensions, PHE, PHE with quadriceps activation (PHEQA), PHE with ankle dorsiflexion (PHEAD), and PHE with ankle plantarflexion (PHEAP), in subjects with CLBP. METHODS: Nineteen subjects with low back pain participated in this study. Subject performed four PHE exercises and surface electromyography (EMG) was used to evaluate the muscle activity. Data were analyzed by one-way repeated-measures analysis of variance (${\alpha}=.05/3=.017$) and a Bonferroni adjustment was performed if a significant difference was found. RESULTS: The muscle activities recorded by EMG showed significant among the four exercises. The muscle activity of the GM increased significantly during PHEQA than during PHEAP (P=.012). CONCLUSION: PHEQA is the most effective exercise for eliciting greater GM muscle activation among the four PHE exercises in subjects with CLBP.

과제지향적 접근법이 만성 뇌졸중 환자의 일어서기 동작 시 환측다리의 체중지지비율과 근활성도에 미치는 영향 (Effect of Task-Oriented Approach on Weight-Bearing Distribution and Muscular Activities of the Paretic Leg During Sit-to-Stand Movement in Chronic Stroke Patients)

  • 김원호
    • 한국전문물리치료학회지
    • /
    • 제18권2호
    • /
    • pp.18-26
    • /
    • 2011
  • The purpose of this study was to investigate the effects of a task-oriented approach on weight-bearing distribution and muscular activities of the paretic leg during sit-to-stand movement in 18 chronic stroke patients. Both groups were received neurodevelopmental treatment for 30 min/day and then the experimental group ($n_1$=9) followed additional a task-oriented approach (sit-to stand training with controlled environment) and the control group ($n_2$=9) followed a passive range of motion exercise for 15 min/day, five days/week, for four weeks. Weight-bearing distribution and muscular activities of the paretic leg during sit-to-stand movement were measured before and after four weeks of training. There was significantly improved weight-bearing distribution of the paretic leg during sit-to-stand movement in the experimental group compared with that of the control group after four weeks of training (p<.05). But electromyographic activities of the quadriceps and the tibialis anterior of the paretic leg were not significantly different (p>.05). Thus, it is necessary to apply a task-oriented approach to improve the weight-bearing distribution of the paretic leg during sit-to-stand movement in chronic stroke patients.

슬개대퇴관절의 해부학과 생체역학에 관한 문헌적 고찰 (Anatomy and Biomechanics of the Patellofemoral Joint)

  • 최병옥
    • 대한물리치료과학회지
    • /
    • 제8권2호
    • /
    • pp.935-944
    • /
    • 2001
  • The patellofemoral pint is formed by the articulation of the patella and femoral condyles in the trochlear groove. The complexity of the patellofemoral pint is magnified by the fact that the tibiofemoral pint works in conjunction with the patellofemoral pint. Additionally, other pints such as the subtalar pint., hip and sacroiliac pints indirectly contribute to the function of the patellofemoral pint. This pint has little bony stability, Soft tissue surrounds the pint to increase stability. The patellofemoral pint increases the mechanical advantage of the quadriceps muscles and resists mechanical loading. In patellofemoral dysfunction, patellofemoral contact pattern is disrupted. leading to excessive compression at the pint. When you treat the patellofemoral dysfunction, you should evaluate anatomic and biomechanic components and find factors of patellofemoral dysfunction. Hamstring tightness. weakness of VMO and tightness of lateral retinaculum lead to flexed knee and abnormal patella tracking and patellofemoral pint reaction force and patellofemoral dysfunction. A through understanding of the anatomy and biomechanics may assist the clinician in the recognition and treatment of patients with patellofemoral pain. Therefore physical therapists should apply modality as well as therapeutic exercise, stretching and strengthening. In this paper, I will discuss the germane anatomical structures and biomechanics of the patellofemoral pint.

  • PDF