• 제목/요약/키워드: Quadrature sets

검색결과 21건 처리시간 0.029초

미분구적법(DQM)을 이용한 곡선보의 외평면 좌굴해석 (Out-of-Plane Buckling Analysis of Curved Beams Using DQM)

  • 강기준
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.189-195
    • /
    • 2002
  • I-단면 곡선보 (curved beam)의 모멘트 하중 하에서 비틀림(warping)을 포함한 평면외 (out-of-plane)의 좌굴을 미분구적법 (DQM)을 이용하여 해석하였다. 다양한 경계조건(boundary conditions) 및 굽힘각(opening angles)에 따른 임계모멘트 (critical moments)를 계산하고, DQM의 해석결과는 해석적 해답 (exact solution) 과 비교 분석하였다. DQM은 적은 요소(grid points)를 사용하여 정확한 해석결과를 보여주었고, 두 경계조건 (고정-고정, 고정-단순지지)하에서 새로운 결과 또한 제시하였다.

ON SOME SOLUTIONS OF A FUNCTIONAL EQUATION RELATED TO THE PARTIAL SUMS OF THE RIEMANN ZETA FUNCTION

  • Martinez, Juan Matias Sepulcre
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.29-41
    • /
    • 2014
  • In this paper, we prove that infinite-dimensional vector spaces of -dense curves are generated by means of the functional equations f(x)+f(2x)+${\cdots}$+f(nx) = 0, with $n{\geq}2$, which are related to the partial sums of the Riemann zeta function. These curves ${\alpha}$-densify a large class of compact sets of the plane for arbitrary small ${\alpha}$, extending the known result that this holds for the cases n = 2, 3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the $n^{th}$ power of the density approaches the Jordan content of the compact set which the curve densifies.

THE DISCRETE SLOAN ITERATE FOR CAUCHY SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권2호
    • /
    • pp.81-95
    • /
    • 1998
  • The superconvergence of the Sloan iterate obtained from a Galerkin method for the approximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equation becomes the Nystr$\ddot{o}$m approximation obtained by the same rules. Consequently, it is impossible to expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.

  • PDF

A computational note on maximum likelihood estimation in random effects panel probit model

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권3호
    • /
    • pp.315-323
    • /
    • 2019
  • Panel data sets have recently been developed in various areas, and many recent studies have analyzed panel, or longitudinal data sets. Often a dichotomous dependent variable occur in survival analysis, biomedical and epidemiological studies that is analyzed by a generalized linear mixed effects model (GLMM). The most common estimation method for the binary panel data may be the maximum likelihood (ML). Many statistical packages provide ML estimates; however, the estimates are computed from numerically approximated likelihood function. For instance, R packages, pglm (Croissant, 2017) approximate the likelihood function by the Gauss-Hermite quadratures, while Rchoice (Sarrias, Journal of Statistical Software, 74, 1-31, 2016) use a Monte Carlo integration method for the approximation. As a result, it can be observed that different packages give different results because of different numerical computation methods. In this note, we discuss the pros and cons of numerical methods compared with the exact computation method.

변형된 힐버트 변환을 이용한 디지털 TV 방송 채널 및 데이터 분석 시스템 (Channel and Data Analysis System for Digital TV Broadcasting Using Modified Hilbert Transform)

  • 서영우;이재권;목하균;최진용;서종수
    • 방송공학회논문지
    • /
    • 제14권4호
    • /
    • pp.438-449
    • /
    • 2009
  • ATSC 방식의 디지털 TV 방송의 수신환경을 분석하기 위해 다양한 채널 환경 분석 시스템이 사용되고 있다. 그러나 기존 장비들은 상용 수신기보다 성능이 떨어져 다중 경로 간섭에 의한 수신기의 수신 불량 현상을 측정하고 분석하기에 어려움이 있다. 이러한 문제점을 해결하기 위해서 상용 DTV 수신 칩세트를 채널 환경 분석 시스템에 직접 이용하는 것을 고려할 수 있다. 일반적으로 상용 DTV 칩세트들은 심볼 주파수로 샘플링된 기저대역의 I (In-phase) 채널 데이터 및 동기 신호들을 제공하므로 측정된 I 채널 데이터를 이용하여 좀 더 정확한 신호 품질 및 채널 신호의 분석을 위해서는 효과적인 Q (Quadrature) 채널 데이터의 추출이 필요하다. 본 논문에서는 DTV 방송 수신환경을 보다 정확하고 효율적으로 분석하기 위하여 DTV 수신 신호 및 채널 분석시스템의 기술적인 요구 사항을 제시하고, 이러한 요구 사항을 만족하게하고 좀 더 정확한 채널환경 분석을 위해 측정된 기저대역의 I 채널 데이터로부터 힐버트(Hilbert) 변환과정을 개선한 Q 채널 데이터 추출 방법을 제안한다. 제안된 데이터 및 채널 분석 시스템은 컴퓨터 모의실험과 실험실 테스트 결과를 통해서 성능을 입증하였으며, 방송신호 측정차량에 장착하여 DTV 동일채널중계기(DOCR) 필드테스트에서 다중경로간섭 신호의 분석에 적용하였다.

WAVENUMBER CORRELATION ANALYSIS OF RADAR INTERFEROGRAM

  • Won, Joong-Sun;Kim, Jeong-Woo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.425-428
    • /
    • 1999
  • The radar interferogram represents phase differences between the two synthetic aperture radar observations acquired in slightly different angle. The success of the radar interferometric application largely depends on the quality of the interferogram generated from two or more synthetic aperture radar data sets. We propose here to apply the wavenumber correlation analysis to the in-phase and quadrature phase of the radar interferogram. The wavenumber correlation analysis is to resolve the highly correlated components from the low correlation components by estimating correlation coefficients for each wavenumber component. Through this approach, one can easily distinguish the signal components from the noise components in the wavenumber domain. Therefore, the wavenumber correlation analysis of the radar interferogram can be utilized to design post filter and to estimate the quality of interferogram. We have tested the wavenumber correlation analysis using a Radarsat SAR data pair to demonstrated the effectiveness of

  • PDF

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.

Differential cubature method for buckling analysis of arbitrary quadrilateral thick plates

  • Wu, Lanhe;Feng, Wenjie
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.259-274
    • /
    • 2003
  • In this paper, a novel numerical solution technique, the differential cubature method is employed to study the buckling problems of thick plates with arbitrary quadrilateral planforms and non-uniform boundary constraints based on the first order shear deformation theory. By using this method, the governing differential equations at each discrete point are transformed into sets of linear homogeneous algebraic equations. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Detailed formulation and implementation of this method are presented. The buckling parameters are calculated through solving a standard eigenvalue problem by subspace iterative method. Convergence and comparison studies are carried out to verify the reliability and accuracy of the numerical solutions. The applicability, efficiency, and simplicity of the present method are demonstrated through solving several sample plate buckling problems with various mixed boundary constraints. It is shown that the differential cubature method yields comparable numerical solutions with 2.77-times less degrees of freedom than the differential quadrature element method and 2-times less degrees of freedom than the energy method. Due to the lack of published solutions for buckling of thick rectangular plates with mixed edge conditions, the present solutions may serve as benchmark values for further studies in the future.

Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory

  • Sadoughifar, Amirmahmoud;Farhatnia, Fatemeh;Izadinia, Mohsen;Talaeetaba, Sayed Behzad
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.225-238
    • /
    • 2020
  • This work treats the axisymmetric buckling of functionally graded (FG) porous annular/circular nanoplates based on modified couple stress theory (MCST). The nanoplate is located at the elastic medium which is simulated by Kerr foundation with two spring and one shear layer. The material properties of the porous FG nanostructure are assumed to vary through the nanoplate thickness based on power-law rule. Based on two variables refined plate theory, the governing equations are derived by utilizing Hamilton's principle. Applying generalized differential quadrature method (GDQM), the buckling load of the annular/circular nanoplates is obtained for different boundary conditions. The influences of different involved parameters such as boundary conditions, Kerr medium, material length scale parameter, geometrical parameters of the nanoplate, FG power index and porosity are demonstrated on the nonlinear buckling load of the annular/circular nanoplates. The results indicate that with increasing the porosity of the nanoplate, the nonlinear buckling load is decreased. In addition, with increasing the material length scale parameter to thickness ratio, the effect of spring constant of Kerr foundation on the buckling load becomes more prominent. The present results are compared with those available in the literature to validate the accuracy and reliability. A good agreement is observed between the two sets of the results.

미분구적법(DQM)을 이용한 곡선보의 내평면 좌굴해석 (In-Plane Buckling Analysis of Curved Beams Using DQM)

  • 강기준;김영우
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.2858-2864
    • /
    • 2012
  • 곡선보 (curved beam)의 내평면 모멘트 및 등분포하중 하에서 평면내 (in-plane) 좌굴 (buckling)을 미분구적법(DQM)을 이용하여 해석하였다. 다양한 경계조건 (boundary conditions)과 굽힘각 (opening angles)에 따른 임계모멘트 및 임계하중을 계산하였다. DQM의 해석결과는 해석적 해답 (exact solution) 결과와 비교하였으며, DQM은 적은 요소 (grid points)를 사용하여 정확한 해석결과를 보여주었다. 두 경계조건(고정-고정, 단순지지-고정)하에서 새 결과를 또한 제시하였다.