• Title/Summary/Keyword: Quadrature Error

Search Result 244, Processing Time 0.024 seconds

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.

Polyphase I/Q Network and Active Vector Modulator Based Beam-Forming Receiver For UAV Based Airborne Network (UAV 공중 네트워크를 위한 손실 없는 Polyphase I/Q 네트워크 및 능동 벡터 변조기 기반 빔-포밍 수신기)

  • Jung, Won-jae;Hong, Nam-pyo;Jang, Jong-eun;Chae, Hyung-il;Park, Jun-seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1566-1573
    • /
    • 2016
  • This paper presents a beam-forming receiver with polyphase In-phase/Quadrature-phase (I/Q) network for airborne communication. In beam-forming receiver, the insertion loss (IL) difference between input path increases the receiver noise figure (NF). The major element for generating IL difference is the impedance variation of phase shifter. In order to maintain a constant IL in every phase, this paper propose a lossless polyphase I/Q network based beam-forming receiver. The proposed lossless polyphase I/Q network has low Q-factor and high impedance for drive back-end VGA (Variable gain amplifier) block with low insertion loss. The 2-stage VGA controls in-phase and quadrature-phase amplitude level for vector summation. The proposed beam-forming receiver prototype is fabricated in TSMC $0.18{\mu}m$ CMOS process. The prototype cover the $360^{\circ}$ with $5.6^{\circ}$ LSB. The average RMS phase error and amplitude error is approximately $1.6^{\circ}$ and 0.3dB.

Improved Method of Characteristics for Two way Subscriber Transmission Systems

  • Phetsomphou, Douangsamone;Tsuchiya, Naosuke;Tanaka, Kimio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1355-1359
    • /
    • 2004
  • The two way subscriber transmission systems have tendency to spread its carrier frequency bandwidth or information bit rate and average bit error rate according to popularization of high speed information through the digital communication system, transmission medium and the Internet. This fact is an important incentive to realize new systems. These two way subscriber transmission systems usually use same cable or same carrier frequency bandwidth for up stream channel and down stream channel. In the systems, the disturbances of noise, crosstalk or fading affect the characteristics. Specifically, these disturbances cause the decrease of information bit rate and degradation of transmission quality. This paper proposes the improved method of their degradations using the particular feature of two way subscriber transmission systems and it makes clear proposed method is effective by theoretically and some numerical examples.

  • PDF

Low-Complexity Hybrid Adaptive Blind Equalization Algorithm for High-Order QAM Signals

  • Rao, Wei;Lu, Changlong;Liu, Yuanyuan;Zhang, Jianqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3772-3790
    • /
    • 2016
  • It is well known that the constant modulus algorithm (CMA) presents a large steady-state mean-square error (MSE) for high-order quadrature amplitude modulation (QAM) signals. In this paper, we propose a low-complexity hybrid adaptive blind equalization algorithm, which augments the CMA error function with a novel constellation matched error (CME) term. The most attractive advantage of the proposed algorithm is that it is computationally simpler than concurrent CMA and soft decision-directed (SDD) scheme (CMA+SDD), and modified CMA (MCMA), while the approximation of steady-state MSE of the proposed algorithm is same with CMA+SDD, and lower than MCMA. Extensive simulations demonstrate the performance of the proposed algorithm.

Performance of MIMO-OFDM System using V-BLAST Receiver (MIMO-OFDM 시스템에서 V-BLAST 수신기의 성능)

  • Park, Hee-Jun;An, Jin-Young;Kim, Sang-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.109-110
    • /
    • 2008
  • 본 논문은 MIMO(Multiple Input Multiple Output)- OFDM(Orthogonal Frequency Division Multiplexing) 시스템에서 V-BLAST (Vertical-Ball Laboratories Layered Space Time) 수신기에 대하여 성능을 비교하고 평가한다. 신호는 각각 송신 안테나에서 독립적으로 전송되며 QPSK(Quadrature Phase Shift Keying) 방식을 이용하여 변조 되고, 송 수신단에 각각 2개의 안테나와 각각 4개의 안테나를 사용한다. V-BLAST 수신기로 ZF(zero-Forcing), MMSE(Minimum Mean Squared Error), ZF-OSIC(Zero Forcing - Ordered Successive Interference Cancellation), MMSE-OSIC(Minimum Mean Squared Error - Ordered Successive Interference Cancellation)를 사용한다. 모의실험 결과에서 MMSE 방식이 ZF 방식 보다 좋은 BER(Bit Error Rate)을 보이고, ZF-OSIC 방식은 ZF 방식과 MMSE 방식 보다 더 좋은 BER을 가지는 것을 확인 할 수 있으며, MMSE-OSIC 방식은 사용된 방식 중 가장 좋은 성능을 보인다.

  • PDF

A hybrid inverse method for small scale parameter estimation of FG nanobeams

  • Darabi, A.;Vosoughi, Ali R.
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • As a first attempt, an inverse hybrid numerical method for small scale parameter estimation of functionally graded (FG) nanobeams using measured frequencies is presented. The governing equations are obtained with the Eringen's nonlocal elasticity assumptions and the first-order shear deformation theory (FSDT). The equations are discretized by using the differential quadrature method (DQM). The discretized equations are transferred from temporal domain to frequency domain and frequencies of the nanobeam are obtained. By applying random error to these frequencies, measured frequencies are generated. The measured frequencies are considered as input data and inversely, the small scale parameter of the beam is obtained by minimizing a defined functional. The functional is defined as root mean square error between the measured frequencies and calculated frequencies by the DQM. Then, the conjugate gradient (CG) optimization method is employed to minimize the functional and the small scale parameter is obtained. Efficiency, convergence and accuracy of the presented hybrid method for small scale parameter estimation of the beams for different applied random error, boundary conditions, length-to-thickness ratio and volume fraction coefficients are demonstrated.

A Study for the Error Performance in 16 Quadrature Amplitude Modulation System (간섭 및 잡음에 대한 16상직교진 폭변조시스템의 오율분석)

  • 박경호;박석철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.3
    • /
    • pp.204-215
    • /
    • 1987
  • In this paper, 16QAM techniques are described. The evaluated error rate performences are shown in figures as parameters of carrier-to-noise power ratio(CNR), carrier-to-interference power ratio(CIR), impulsive noise index, and Gaussian to impulsive noise power ration. Also, the error rate performances are measured experimentally by hardware system and compared with the theoretical results.

  • PDF

A Comparison of the Error Rate Performances of Various Digitally Modulated Signals in the Environment of Tone/Multiple Interferer (톤간섭 및 다중간섭하에서 제반 디지탈 변조신호의 오율특성 비교)

  • 공병옥;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.10
    • /
    • pp.797-810
    • /
    • 1990
  • The error rate equations of digitally modulated signals transmitted through the Gaussian noise and tone multiple interference channel have been derived. Using the derived equations of error probabilities in the environments of Gaussian noise tone interferer and Gaussian noise multiple interferer, the error rate performances of various digitally modulated signals have been evaluated, and compared in graphs as a function of average carrier to tone interferer power ratio(CIR), average carrier to multiple interferer power ratio(CIT) and the average carrer-to-Gaussian noise powr ratio(CIR). In this paper, the modulation schemes such as amplitude shift keying (ASK), phase shift keying(PSK), frequency shift keying(FSK), minimum shift keying(MSK), quadrature amplitud modulation(QAM) and amplitude phase shift keying(APK) have been selected for the study of performance comparison. The results of comparison show us that, in low bits/sec/Hz, PSK is superior to the other schemes, but in high bits/sec/Hz, mixed multi ary type is better than single multi ary type. And in strong noise evironment, the multiple interferer has much influence than tone interferer, however, in low noise environment. the mojor error factor is tone interferer. But tone interference effect nearly disappears over specified CIR level about 20[dB]. And the modulation schemes using amplitude are heavily influenced by multiple interference.

  • PDF

SER Analysis of QAM with Space Diversity in Rayleigh Fading Channels

  • Kim, Chang-Joo;Kim, Young-Su;Jeong, Goo-Young;Mun, Jae-Kyung;Lee, Hyuck-Jae
    • ETRI Journal
    • /
    • v.17 no.4
    • /
    • pp.25-35
    • /
    • 1996
  • This paper derives the symbol error probability for quadrature amplitude modulation(QAM) with L-fold space diversity in Rayleigh fading channels. Two combining techniques, maximal ratio combining(MRC) and selection combining(SC), are considered. The formula for MRC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an additive white Gaussian noise(AWGN) channel over a chi-square distribution with 2L degrees of freedom. The obtained formula overcomes the limitations of the earlier work, which has been limited only to deriving the symbol error rate(SER) of QAM with two branch MRC space diversity. The formula for SC space diversity is obtained by averaging the symbol error probability of M-ary QAM in an AWGN channel over the distribution of the maximum signal-to noise ratio among all of the diversity channels for SC space diversity has been reported yet. Analytical results show that the probability of error decreases with the order of diversity gain per additional branch decreases as the number of branches becomes larger. On the other hand, the performance of 16 QAM with MRC becomes much better than that of SC as the number of branches becomes larger. By giving the order of diversity, L, and the number of signal points, M, we have been able to obtain the SER performance of QAM with general space diversity. These results can be used to determine the order of diversity to achieve the desired SER in land mobile communication system employing QAM modulation.

  • PDF

Closed-form Expression for the Symbol Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation (QAM 변조방식을 갖는 직교 시공간 블록 부호의 심볼 오율)

  • 김상효;강익선;노종선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.561-569
    • /
    • 2003
  • In this paper, for my linear orthogonal space-time block including the orthogonal space-time codes introduced by Alamouti[1], Tarokh[14], and Xia[11], the exact expression for the pairwise error probability in the slow Rayleigh fading channel is derived in terms of the message symbol distance between two message vectors rather than the codeword symbol distance between two transmitted codeword matrices. Using the one-dimensional component symbol error probability, the exact closed form expressions for the symbol error probability of linear orthogonal space-time codes are derived for QPSK, 16-QAM, 64-QAM, and 256-QAM.