• Title/Summary/Keyword: Quadrature Error

Search Result 244, Processing Time 0.027 seconds

2-step Quadrature Phase-shifting Digital Holographic Optical Encryption using Orthogonal Polarization and Error Analysis

  • Gil, Sang Keun
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.354-364
    • /
    • 2012
  • In this paper, a new 2-step quadrature phase-shifting digital holographic optical encryption method using orthogonal polarization is proposed and tolerance errors for this method are analyzed. Unlike the conventional technique using a PZT mirror, the proposed optical setup comprises two input and output polarizers, and one ${\lambda}$/4-plate retarder. This method makes it easier to get a phase shift of ${\pi}$/2 without using a mechanically driven PZT device for phase-shifting and it simplifies the 2-step phase-shifting Mach-Zehnder interferometer setup for optical encryption. The decryption performance and tolerance error analysis for the proposed method are presented. Computer experiments show that the proposed method is an alternate candidate for 2-step quadrature phase-shifting digital holographic optical encryption applications.

A Quadrature VCO Exploiting Direct Back-Gate Second Harmonic Coupling

  • Oh, Nam-Jin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.134-137
    • /
    • 2008
  • This paper proposes a novel quadrature VCO(QVCO) based on direct back-gate second harmonic coupling. The QVCO directly couples the current sources of the conventional LC VCOs through the back-gate instead of front-gate to generate quadrature signals. By the second harmonic injection locking, the two LC VCOs can generate quadrature signals without using on-chip transformer, or stability problem that is inherent in the direct front-gate second harmonic coupling. The proposed QVCO is implemented in $0.18{\mu}m$ CMOS technology operating at 2 GHz with 5.0 mA core current consumption from 1.8 V power supply. The measured phase noise of the proposed QVCO is - 63 dBc/Hz at 10 kHz offset, -95 dBc/Hz at 100 kHz offset, and -116 dBc/Hz at 1 MHz offset from the 2 GHz output frequency, respectively. The calculated figure of merit(FOM) is about -174 dBc/Hz at 1 MHz offset. The measured image band rejection is 46 dB which corresponds to the phase error of $0.6^{\circ}$.

Quadrature Correlated Superposition Modulation: Practical Perspective of Correlated Superposition Coding

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Recently, a lossless non-orthogonal multiple access (NOMA) implementation without successive interference cancellation (SIC) has been proposed in the literature of NOMA. This lossless non-SIC NOMA was achieved via correlated superposition coding (CSC), in contrast to conventional independent superposition coding (ISC). However, only the achievable data rates for CSC NOMA were investigated. Thus, this paper proposes a practical CSC NOMA scheme under Rayleigh fading channel environments. First, we design the practical CSC NOMA scheme, namely quadrature correlated superposition modulation (CSM) NOMA, without channel coding, i.e., uncoded systems. In addition, we calculate the symbol error rates (SERs) for this quadrature CSM NOMA scheme. Then, simulations demonstrate that for the weak channel gain's user, the SER performance of the proposed quadrature CSM NOMA is shown to be improved greatly, compared to that of the conventional quadrature amplitude modulation (QAM) NOMA, whereas for the strong channel gain's user, the SER performance of the proposed quadrature CSM NOMA degrades a little, compared to that of the conventional QAM NOMA. As a result, the proposed quadrature CSM NOMA scheme could be considered as a practical NOMA scheme for CSC NOMA schemes toward the fifth-generation (5G) and next generation communications.

Effects of LDPC Code on the BER Performance of MPSK System with Imperfect Receiver Components over Rician Channels

  • Djordjevic, Goran T.;Djordjevic, Ivan B.;Ivanis, Predrag N.
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.619-621
    • /
    • 2009
  • In this letter, we study the influence of receiver imperfections on bit error rate (BER) degradations in detecting low-density parity-check coded multilevel phase-shift keying signals transmitted over a Rician fading channel. Based on the analytical system model which we previously developed using Monte Carlo simulations, we determine the BER degradations caused by the simultaneous influences of stochastic phase error, quadrature error, in-phase-quadrature mismatch, and the fading severity.

Bit Error Rate of Generalized Triangular QAM (일반화된 TQAM의 비트 오류 확률)

  • Cho, Kyongkuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.5
    • /
    • pp.229-236
    • /
    • 2014
  • Quadrature Amplitude Modulation (QAM) is widely used in contemporary wired and wireless communications systems. In this paper, I propose a generalized triangular quadrature amplitude modulation (gTQAM) that includes the square quadrature amplitude modulation (SQAM), TQAM, and ${\Theta}$-QAM as special cases. Therefore, the proposed gTQAM forming a lattice of arbitrary triangles provides a versatile structure in signal constellations compared to other QAM schemes. For M-ary gTQAM, I derive an exact closed-form expression for the bit error rate (BER), and present the optimal signal constellations for given SNR values from the derived BER expression. Finally, I validate the derived BER results through computer simulations.

Design and Performance Analysis of Quadrature-Amplitude-Position-Modulation Method for the High Power Efficiency (고전력 효율 Quadrature-Amplitude-Position-Modulation 변조 방식과 성능 평가)

  • Choi, Jae-Hoon;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.108-113
    • /
    • 2011
  • In this paper, we propose QAPM(Quadrature Amplitude Position Modulation) modulation scheme for improving power efficiency and we compare existing PSSK(Phase Silence Shift Keying) and QAPM. An existing PSSK Modulation is extension from PSK modulation technique. The conventional PSSK modulation technique can be regarded as an extension from PSK modulation. And this PSSK has better power efficiency than PSK modulation. The Bandwidth efficiency of PSSK is half than PSK, but improved BER(Bit Error Rate) performance. A propose QAPM scheme is build on QAM. And BER performance of QAPM is better than PSSK because BER performance of QAM is better than PSK. In this paper, we compare PSSK and QAPM regard to bit error rate and throughput.

Quadrature Phase Detector for High Speed Delay-Locked Loop

  • Wang, Sung-Ho;Kim, Jung-tae;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.28-31
    • /
    • 2004
  • A Quadrature phase detector for high-speed delay-locked loop is introduced. The proposed Quadrature phase detector is composed of two nor gates and it determines if the phase difference of two input clocks is 90 degrees or not. The delay locked loop circuit including the Quadrature phase detector is fabricated in a 0.18 urn standard CMOS process and it operates at 5 ㎓ frequency. The phase error of the delay-locked loop is maximum 2 degrees and the circuits are robust with voltage, temperature variations.

  • PDF

Experimental Considration of Multi-order Sampling for Digital Beamforming (디지털 빔포밍을 위한 다차 샘플링 방법의 실험적 고찰)

  • 나병윤;정목근
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 1998
  • In this paper, several bandwidth sampling methods were compared using experimental result in which contains "multi-order sampling", which was proposed for envelope detections in RF ultrasonic signals. A "Quadrature sampling method" and "Second-order sampling method" were compared with it. The resultant image of second-order sampling method introduces too much error as compared with the result of quadrature sampling. But Multi-order sampling method, specialy 5-th sampling method showed quite good envelope detection property. This means that more economical and quite good performance digital beamforming system can be built by adopting this multi-order sampling method.s multi-order sampling method.

  • PDF

An Efficient Algorithm for Performance Analysis of Multi-cell and Multi-user Wireless Communication Systems

  • Wang, Aihua;Lu, Jihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2035-2051
    • /
    • 2011
  • Theoretical Bit Error Rate (BER) and channel capacity analysis are always of great interest to the designers of wireless communication systems. At the center of such analyses people are often encountered with a high-dimensional multiple integrals with quite complex integrands. Conventional Gaussian quadrature is inefficient in handling problems like this, as it tends to entail tremendous computational overhead, and the principal order of its error term increase rapidly with the dimension of the integral. In this paper, we propose a new approach to calculate complex multi-fold integrals based on the number theory. In contrast to Gaussian quadrature, the proposed approach requires less computational effort, and the principal order of its error term is independent of the dimension. The effectiveness of the number theory based approach is examined in BER and capacity analyses for practical systems. In particular, the results generated by numerical computation turn out in good match with that of Monte-Carlo simulations.

Error Performance of BPSK and QPSK Signals in Mobile-Satellite Communication Channel (이동 위성 통신 채널에서의 BPSK 및 QPSK의 오율 특성)

  • 박해천;이희덕;황인광;조성준
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.7
    • /
    • pp.1224-1233
    • /
    • 1994
  • The error performance of BPSK and QPSK signals in mobile satellite channel is investigated considering nonlinearity of TWTA (Traveling Wave Tube Amplifier) in the presence of AWGN(Additive White Gaussian Noise) on the uplink and downlink paths. It is assumed that the fading on the downlink path forms a Rician distribution. The Rician distribution is approximated by discrete probability values. The values are firstly found by Classical Moment Technique. Finally, the error probability is evaluated using approximate discrete values of Rician distribution and the Gaussian Quadrature Formula.

  • PDF