• Title/Summary/Keyword: Quadrature Amplitude Modulation(QAM)

Search Result 113, Processing Time 0.021 seconds

Cross-Correlated Quadrature Amplitude Modulation for Non-Orthogonal Multiple Access in 5G Systems

  • Chung, Kyuhyuk
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.283-290
    • /
    • 2021
  • Recently, correlated superposition coding (CSC) has been proposed to implement non-orthogonal multiple access (NOMA) without successive interference cancellation (SIC), without loss of spectral efficiency, in contrast to conventional independent superposition coding (ISC). However, correlation between signals has reduced the average total allocated power, which results in degraded performance. Thus, in order to avoid the reduction of the average total allocated power owing to correlation between signals, this paper proposes a cross-correlated quadrature amplitude modulation (QAM) NOMA scheme under Rayleigh fading channel surroundings. First, we design the cross-correlated QAM NOMA scheme. Then, simulations demonstrate that for the weaker channel gain's user, the symbol error rate (SER) performance of the proposed cross-correlated QAM NOMA improves largely, whereas for the stronger channel gain's user, the SER performance of the proposed cross-correlated QAM CSM NOMA degrades little, compared to that of the conventional QAM NOMA.

Improving The Performance of Turbo Code by Optimizing QAM Constellation (QAM 변조방식의 성상도 최적화를 통한 이진 터보 부호의 성능 개선)

  • Lee, Keun-Hyung;Lee, Ji-Yeon;Kang, Dong-Hoon;Oh, Wang-Rok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.39-44
    • /
    • 2009
  • It is well-known that the performance of turbo codes can be improved by allocating different energies per code symbol. In this paper, based on this observation, we propose a joint encoding and modulation scheme for quadrature amplitude modulated turbo code systems. In the proposed scheme, the amount of energy difference between the turbo coded symbols is optimized by optimizing the constellation of quadrature amplitude modulation (QAM). The proposed scheme offers better coding gain compared to the conventional combination of binary turbo code and QAM at the bit error rate of 10$^{-5}$. Also, the performance of binary turbo codes with the proposed QAM constellation for various code symbol mapping strategies are verified.

Exact BER Expressions for Decode-and-Forward Relaying in Rayleigh Fading Channels (레일레이 페이딩 채널에서 디코팅 후 전달 중계방식에 대한 비트 오차율 분석)

  • Lee, In-Ho;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12A
    • /
    • pp.1244-1250
    • /
    • 2007
  • User cooperation provides high reliability in wireless communication systems by employing relay nodes to transmit the same information. In this paper, a bit error rate (BER) study is presented for decode-and-forward (DF) relaying for user cooperation in independent and identically distributed Rayleigh fading channels. For an arbitrary number of relays, exact and closed-form expressions of the BER are proposed for M-ary PAM (Pulse Amplitude Modulation), QAM (Quadrature Amplitude Modulation) and PSK (Phase Shift Keying), respectively. It is also shown that the analytic results are perfectly matched with the simulated ones.

Improving the performance of turbo code by optimizing QAM constellation points (QAM 변조방식의 성상도 최적화를 통한 터보 부호의 성능 개선 연구)

  • Lee, Keun-Hyung;Kang, Dong-Hoon;Lee, Ji-Yeon;Oh, Wang-Rok
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.9-11
    • /
    • 2009
  • It is well-known that the performance of turbo codes can be improved by allocating different energies per code symbol. In this paper, based on this observation, we propose a joint encoding and modulation scheme for quadrature amplitude modulated turbo code systems. In the proposed scheme, the amount of energy difference between the turbo coded symbols is optimized by optimizing the constellation of quadrature amplitude modulation(QAM). The proposed scheme offers better coding gain compared to the conventional combination of binary turbo code and QAM at the bit error rate of $10^{-5}$.

  • PDF

Power Efficient Modulation Scheme $CDM^2-MAP$ for Low Complexity and High Performance

  • Khuong Ho Van;Kong Hyung-Yun;Nam Doo-Hee
    • Journal of Communications and Networks
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • Quadrature amplitude modulation-spread spectrum (QAM-SS) and code division multiplexing (CDM) are multi-level modulation schemes with high performance but they cause a large peak-average power ratio (PAPR). Therefore, this paper proposes a novel modulation scheme for high-rate transmission which follows a sequence of CDM-mapping-CDM not only to correct the above-mentioned problem but also offer a high flexibility in obtaining arbitrary multilevel modulation with very low implementation complexity and high performance.

BER Performance Analysis of Linear Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation in Quasi Static Rayleigh Fading Channel (QAM 변조방식을 갖는 선형 직교 시공간 블록 부호의 준정지 레일리 페이딩 채널에서의 비트 오율 성능 분석)

  • Kim Sang-Hyo;Yang Jae-Dong;No Jong-Seon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.6C
    • /
    • pp.575-581
    • /
    • 2006
  • In this paper, we first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of orthogonal space-time block codes (OSTBC). Using the ODSEF and the general bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon, the exact closed form expressions for the BEP of linear OSTBCs with QAM in slow-varying Rayleigh fading channel are derived.

Amplitude and Phase Variant SLM Scheme for PAPR Reduction in QAM Modulated OFDM Signals (직교 주파수 분할 다중화 신호의 최대전력 대 평균전력의 비 감소를 위한 크기 및 위상 변이 선택 사상 기법)

  • Jeon, Hyun-Bae;Kim, Ki-Hoon;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.203-209
    • /
    • 2010
  • In this paper, we propose a new selected mapping (SLM) scheme for reducing peak to average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals modulated with quadrature amplitude modulation (QAM), called amplitude and phase variant SLM (APSLM). Contrary to the conventional SLM which rotates the phases of QAM symbols in the frequency domain, the proposed scheme changes the magnitudes as well as the phases of QAM symbols by applying binary sequences to the binary data sequence before mapped to QAM symbols. Simulation results show that the proposed scheme has better PAPR reduction performance than the conventional SLM scheme for the QAM modulated OFDM signals, especially for the small number of subcarriers.

A Comparative Study of Branch Metric Calculator in QAM-TCM Decoder (QAM-TCM 복호기의 가지척도계산방식 비교 연구)

  • 김진우;최시연;강병희;오길남;김덕현
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.249-252
    • /
    • 2001
  • TCM(Trellis Coded Modulation) has soft decision scheme so that BM(Branch Metric) calculates the ED(Euclidean Distance) between the received signal and each code words in signal space. For computing the ED, square and square root computations increase the hardware complexity. Some simplified method is known for convolutional codes with QPSK(Quadrature Phase Shift Keying), PSK(Phase Shift Keying) modulation. But it is not acceptable for QAM (Quadrature Amplitude Modulation)-TCM scheme. In this paper, we suggest that two modified BM computation methods, which is applicable for QAM-TCM. By comparative study, we also assessed two proposed method in the case of hardware complexity and BER (Bit Error Rate) performance.

  • PDF

A New Design of Signal Constellation of the Spiral Quadrature Amplitude Modulation (나선 직교진폭변조 신호성상도의 새로운 설계)

  • Li, Shuang;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.398-404
    • /
    • 2020
  • In this paper, we propose a new design method of signal constellation of the spiral quadrature amplitude modulation (QAM) exploiting a modified gradient descent search algorithm and its binary mapping rule. Unlike the conventional method, the new method, which uses and the constellation optimization algorithm and the maximum number of iterations as a parameter for the iterative design, is more robust to phase noise. And the proposed binary mapping rule significantly reduces the average Hamming distance of the spiral constellation. As a result, the proposed spiral QAM constellation has much improved error performance compared to the conventional ones even in a very severe phase noise environment. It is, therefore, considered that the proposed QAM may be a useful modulation format for coherent optical communication systems and orthogonal frequency division multiplexing (OFDM) systems.

Priority-based Unequal Error Protection Scheme of Data partitioned H.264 video with Hierarchical QAM

  • Chen, Rui;Wu, Minghu;Yang, Jie;Rui, Xiongli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4189-4202
    • /
    • 2014
  • In this paper, we propose a priority-based unequal error protection scheme of data partitioned H.264/AVC video with hierarchical quadrature amplitude modulation. In order to map data with higher priority onto the most significant bits of QAM constellation points, a priority sorting method categorizes different data partitions according to the unequal importance factor of encoded video data in one group of pictures by evaluated the average distortion. Then we propose a hierarchical quadrature amplitude modulation arrangement with adaptive constellation distances, which takes into account the unequal importance of encoded video data and the channel status. Simulation results show that the proposed scheme improves the received video quality by about 2 dB in PSNR comparing with the state-of-the-art unequal error protection scheme, and outperforms EEP scheme by up to 5 dB when the average channel SNR is low.