• Title/Summary/Keyword: Quadrature

Search Result 1,091, Processing Time 0.022 seconds

A Study on the Characteristic Analysis of NUDFET by FEM (FEM에 의한 NUDFET의 특성해석에 관한 연구)

  • Kim, Jong-Ryeul;Jung, Jong-Chuck;Kim, Young-Cig;Sung, Man-Young;Cho, Ho-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1247-1249
    • /
    • 1993
  • In this paper, NUDFET(NonUniformly Doped Field Effect Transistor) is presented as an alternative which offers the possibility of reducing the power necessary to operate switching circuits without a substantial loss in speed. The purpose of this NUDFET is to modify the electric field profile in order to cause carrier velocity saturation to occur at a lower voltage than it would occur in the uniformly doped device of the same channel length. The more MESFET and NUDFET circuits are realized, the more accurate model ins the performance of these devices become required. Analytic model ins was replaced by numerical analysis because of the complexity of device configuration. In this paper, FEM is selected because of simpler local mesh refinement and smaller computer memory than FDM. For accurate analysis, this paper has applied the Scharfetter-Gummel(S-G) Scheme and seven-point Gaussian Quadrature rule to assembly of the finite-element stiffness matrices and right-hand side vector of the semiconductor equations.

  • PDF

Development of a fast reactor multigroup cross section generation code EXUS-F capable of direct processing of evaluated nuclear data files

  • Lim, Changhyun;Joo, Han Gyu;Yang, Won Sik
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.340-355
    • /
    • 2018
  • The methods and performance of a fast reactor multigroup cross section (XS) generation code EXUS-F are described that is capable of directly processing Evaluated Nuclear Data File format nuclear data files. RECONR of NJOY is used to generate pointwise XS data, and Doppler broadening is incorporated by the Gauss-Hermite quadrature method. The self-shielding effect is incorporated in the ultrafine group XSs in the resolved and unresolved resonance ranges. Functions to generate scattering transfer matrices and fission spectrum matrices are realized. The extended transport approximation is used in zero-dimensional calculations, whereas the collision probability method and the method of characteristics are used for one-dimensional cylindrical geometry and two-dimensional hexagonal geometry problems, respectively. Verification calculations are performed first for various homogeneous mixtures and cylindrical problems. It is confirmed that the spectrum calculations and the corresponding multigroup XS generations are performed adequately in that the reactivity errors are less than 50 pcm with the McCARD Monte Carlo solutions. The nTRACER core calculations are performed with the EXUS-F-generated 47 group XSs for the two-dimensional Advanced Burner Reactor 1000 benchmark problem. The reactivity error of 160 pcm and the root mean square error of the pin powers of 0.7% indicate that EXUF-F generates properly the broad-group XSs.

A new Tone's method in APOLLO3® and its application to fast and thermal reactor calculations

  • Mao, Li;Zmijarevic, Igor
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1269-1286
    • /
    • 2017
  • This paper presents a newly developed resonance self-shielding method based on Tone's method in $APOLLO3^{(R)}$ for fast and thermal reactor calculations. The new method is based on simplified models, the narrow resonance approximation for the slowing down source and Tone's approximation for group collision probability matrix. It utilizes mathematical probability tables as quadrature formulas in calculating effective cross-sections. Numerical results for the ZPPR drawer calculations in 1,968 groups show that, in the case of the double-column fuel drawer, Tone's method gives equivalent precision to the subgroup method while markedly reducing the total number of collision probability matrix calculations and hence the central processing unit time. In the case of a single-column fuel drawer with the presence of a uranium metal material, Tone's method obtains less precise results than those of the subgroup method due to less precise heterogeneous-homogeneous equivalence. The same options are also applied to PWR UOX, MOX, and Gd cells using the SHEM 361-group library, with the objective of analyzing whether this energy mesh might be suitable for the application of this methodology to thermal systems. The numerical results show that comparable precision is reached with both Tone's and the subgroup methods, with the satisfactory representation of intrapellet spatial effects.

Simultaneous Measurements of Local Phase and Reflectivity Variation of a Surface Using Multiport Homodyne Interferometer (다출력단 호모다인 간섭계를 이용한 위상 및 반사율 분포의 동시 측정)

  • 정희성;김종회;조규만
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.60-61
    • /
    • 2000
  • 표면 형상을 측정하는 방법은 샘플표면의 평평도, 곡률, 거칠기, 깊이 측정등의 수많은 상업적 응용을 위해 광범위하게 개발되어왔다. 이중에서도 특히 간섭현상을 이용한 광 표면 프로파일러는 표면의 3차원 구조를 측정하는데 있어서 subangstrom의 매우 높은 깊이 분해능을 가지므로 샘플 표면의 정밀 진단에 많이 사용되어 왔다. [1,2] 광 간섭 현미경은 기본적으로 광위상 변화를 검출하여 그것을 표면구조변화로 바꾸어주는 역할을 한다. 그러나 광위상 변화는 샘플 표면의 구조뿐만 아니라 물질 변화와 박막두께 변화에도 민감하므로 순수한 표면구조측정은 샘플이 단일물질인 경우에만 달성된다는 문제점이 있다. 따라서 이러한 광위상 측정과 관련된 ambiguity를 해결하기 위해서는 일반적인 광 간섭 현미경에서 얻어지는 위상데이터와 더불어 물질변화를 분석할 수 있는 다른 추가적인 데이터가 필요하다. 이러한 필요성 때문에 우리는 광위상 뿐만 아니라 반사율 분포도 동시에 측정할 수 있는 새로운 방식의 다출력단 호모다인 간섭계(Homodyne I/Q Interferometer; HIQI)를 구성하였으며[3], 그 실험장치도는 [Fig. 1]과 같다. HIQI는 in-phase and quadrature 검출방식에 기반을 두며, 이 검출방식은 PBS에서 반사되는 빛살과 투과되는 빛살 사이의 위상차가 $\pi$/4라는 실험결과로부터 달성된다. HIQI는 샘플 표면의 3차원 구조 뿐만 아니라 광학적 특성의 2차원 분포도 동시에 얻을 수 있다. (중략)

  • PDF

Radiotelemetry for ECG and Event Signals Using FDM (주파수분할 다중방식에 의한 심전신호 및 부가정보신호 무선전송)

  • 이훈규;박동철
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2000
  • This study is to dvelop a radiotelemetry system to transmit and receive ECG (electrocardiograph) and event signals by using the frequency division multiplexing(FDM) technique. ECG signal sensed by the electrodes is amplified and added to the event signals acting in different frequency range for lead-off, nurse call and low level battery by using FDM. The sub-carrier oscillator using Colpitts circuits and main carrier frequency which is multiplied is frequency modulated by this superhetrodyne technique, and demodulated from the compose IF signal through the quadrature demodulator. A pulse counter demodulator and filtering circuits extract the original ECG and event signals.

  • PDF

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad;Akbarshahi, Amir;Shafiei, Navvab
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.141-169
    • /
    • 2017
  • In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Thermo-elastic analysis of rotating functionally graded micro-discs incorporating surface and nonlocal effects

  • Ebrahimi, Farzad;Heidar, Ebrahim
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.3
    • /
    • pp.295-318
    • /
    • 2018
  • This research studies thermo-elastic behavior of rotating micro discs that are employed in various micro devices such as micro gas turbines. It is assumed that material is functionally graded with a variable profile thickness, density, shear modulus and thermal expansion in terms of radius of micro disc and as a power law function. Boundary condition is considered fixed-free with uniform thermal loading and elastic field is symmetric. Using incompressible material's constitutive equation, we extract governing differential equation of four orders; to solution this equation, we utilize general differential quadrature (GDQ) method and the results are schematically pictured. The obtained result in a particular case is compared with another work and coincidence of results is shown. We will find out that surface effect tends to split micro disc's area to compressive and tensile while nonlocal parameter tries to converge different behaviors with each other; this convergence feature make FGIMs capable to resist in high temperature and so in terms of thermo-elastic behavior we can suggest, using FGIMs in micro devices such as micro turbines (under glass transition temperature).

Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns

  • Liu, Wen-qi;Liu, Shan-jun;Fan, Ming-yu;Tian, Wei;Wang, Ji-peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.295-306
    • /
    • 2020
  • This paper deals with free vibration analysis of non-uniform column resting on elastic foundations and subjected to follower force at its free end. The internal pores and graphene platelets (GPLs) are distributed in the matrix according to different patterns. The model is proposed with material parameters varying in the thickness of column to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite column, it is crucial to consider porosities inside the material structure.

Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity

  • Noroozi, Reza;Barati, Abbas;Kazemi, Amin;Norouzi, Saeed;Hadi, Amin
    • Advances in nano research
    • /
    • v.8 no.1
    • /
    • pp.13-24
    • /
    • 2020
  • In this paper, for the first time based on the nonlocal strain gradient theory the effect of size dependency in torsional vibration of bi-direction functionally graded (FG) nonlinear nano-cone is study. The material properties were assumed to vary according to the arbitrary function in radial and axial directions. The Navier equation and boundary conditions of the size-dependent bidirectional FG nonlinear nano-cone were derived by Hamilton's principle. These equations were solved by employing the generalized differential quadrature method (GDQM). The presented model can turn into the classical model if the material length scale parameters are taken to be zero. The effects of some parameters, such as inhomogeneity constant, cross-sectional area parameter and small-scale parameters, were studied. As an essential result of this study can be stated that an FG nano-cone model based on the nonlocal elasticity theory behaves softer and based on the strain gradient theory behaves harder.