Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.2.141

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam  

Ehyaei, Javad (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University)
Akbarshahi, Amir (Faculty of Engineering, Department of Mechanics, Imam Khomeini International University)
Shafiei, Navvab (Department of Mechanical Engineering, Payame Noor University (PNU))
Publication Information
Advances in nano research / v.5, no.2, 2017 , pp. 141-169 More about this Journal
Abstract
In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.
Keywords
vibration; functionally graded nanobeam; porosity; rotation; Eringen's nonlocal elasticity; GDQ method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015a), "Variational formulations for functionally graded nonlocal Bernoulli-Euler nanobeams", Compos. Struct., 129, 80-89.   DOI
2 Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2015b), "A gradient Eringen model for functionally graded nanorods", Compos. Struct., 131, 1124-1131.   DOI
3 Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016a), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compos. Part B: Eng., 100, 208-219.   DOI
4 Barretta, R., Feo, L., Luciano, R. and de Sciarra, F.M. (2016b), "Application of an enhanced version of the Eringen differential model to nanotechnology", Compos. Part B: Eng., 96, 274-280.   DOI
5 Bath, J. and Turberfield, A.J. (2007), "DNA nanomachines", Nature Nanotech., 2(5), 275-284.   DOI
6 Bedard, T.C. and Moore, J.S. (1995), "Design and synthesis of molecular turnstiles", J. Am. Chem. Soc., 117(43), 10662-10671.   DOI
7 Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238.   DOI
8 Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M. and Vicario, J. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437(7063), 1337-1340.   DOI
9 Van Delden, R.A., Ter Wiel, M.K., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102.   DOI
10 Vosoughi, A.R., Malekzadeh, P., Banan, M.R. and Banan, M.R. (2012), "Thermal buckling and postbuckling of laminated composite beams with temperature-dependent properties", Int. J. Non-Linear Mech., 47(3), 96-102.   DOI
11 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98, 124301   DOI
12 Wang, K. and Wang, B. (2014), "Influence of surface energy on the non-linear pull-in instability of nanoswitches", Int. J. Non-Linear Mech., 59, 69-75.   DOI
13 Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18(10), 105401.   DOI
14 Yang, J. and Chen, Y. (2008), "Free vibration and buckling analyses of functionally graded beams with edge cracks", Compos. Struct., 83(1), 48-60.   DOI
15 Yang, J., Chen, Y., Xiang, Y. and Jia, X.L. (2008), "Free and forced vibration of cracked inhomogeneous beams under an axial force and a moving load", J. Sound Vib., 312(1), 166-181.   DOI
16 Ying, J., Lu, C. and Chen, W. (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219.   DOI
17 Zenkour, A.M. and Abouelregal, A.E. (2015), "Thermoelastic interaction in functionally graded nanobeams subjected to time-dependent heat flux", Steel Compos. Struct., Int. J., 18(4), 909-924.   DOI
18 Chakraborty, A. and Gopalakrishnan, S. (2003), "A spectrally formulated finite element for wave propagation analysis in functionally graded beams", Int. J. Solids Struct., 40(10), 2421-2448.   DOI
19 Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52.   DOI
20 Benvenuti, E. and Simone, A. (2013), "One-dimensional nonlocal and gradient elasticity: closed-form solution and size effect", Mech. Res. Commun., 48, 46-51.   DOI
21 Ebrahimi, F. and Hashemi, M. (2016), "On vibration behavior of rotating functionally graded double-tapered beam with the effect of porosities", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(10), 1903-1916.   DOI
22 Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nature Nanotech., 7(4), 252-256.   DOI
23 Ebrahimi, F. (2013), "Analytical investigation on vibrations and dynamic response of functionally graded plate integrated with piezoelectric layers in thermal environment", Mech. Adv. Mater. Struct., 20(10), 854-870.   DOI
24 Ebrahimi, F and Barati, M.R. (2016), "An exact solution for buckling analysis of embedded piezo-electromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84.   DOI
25 Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 37(4), 1435-1444.   DOI
26 Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. Part B: Eng., 79, 156-169.   DOI
27 Zhang, S., Liu, W.K. and Ruoff, R.S. (2004a), "Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings", Nano Letters, 4(2), 293-297.   DOI
28 Eltaher, M., Emam, S.A. and Mahmoud, F. (2012), "Free vibration analysis of functionally graded sizedependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420.   DOI
29 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
30 Eringen, A.C. and Edelen, D. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248.   DOI
31 Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004b), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70, 205430   DOI
32 Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404   DOI
33 Zhang, Y., Liu, X. and Liu, G. (2007), "Thermal effect on transverse vibrations of double-walled carbon nanotubes", Nanotechnology, 18(44), 445701.   DOI
34 Zhao, N., Qiu, P.Y. and Cao, L.L. (2012), "Development and application of functionally graded material", Advanced Materials Research, 562.
35 Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nature Nanotech., 3(8), 465-475.   DOI
36 Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, 1077546315627723.
37 Ghadiri, M., Shafiei, N. and Safarpour, H. (2016a), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen's nonlocal elasticity", Microsyst. Technol., 1-21.
38 Ghadiri, M., Shafiei, N. and Akbarshahi, A. (2016b), "Influence of thermal and surface effects on vibration behavior of nonlocal rotating Timoshenko nanobeam", Appl. Phys. A, 122(7), 1-19.
39 Guo, J., Kim, K., Lei, K.W. and Fan, D.L. (2015), "Ultra-durable rotary micromotors assembled from nanoentities by electric fields", Nanoscale, 7(26), 11363-11370.   DOI
40 Ebrahimi, F. and Zia, M. (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125.   DOI
41 Ilkhani, M. and Hosseini-Hashemi, S. (2016), "Size dependent vibro-buckling of rotating beam based on modified couple stress theory", Compos. Struct., 143, 75-83.   DOI
42 Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S.R., Ernst, K.H. and Feringa, B.L. (2011), "Electrically driven directional motion of a four-wheeled molecule on a metal surface", Nature, 479(7372), 208-211.   DOI
43 Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008), "Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402.   DOI
44 Khatua, S., Guerrero, J.M., Claytor, K., Vives, G., Kolomeisky, A.B., Tour, J.M. and Link, S. (2009), "Micrometer-scale translation and monitoring of individual nanocars on glass", ACS Nano, 3(2), 351-356.   DOI
45 Kiani, K. (2010), "A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect", Int. J. Mech. Sci., 52(10), 1343-1356.   DOI
46 Kiani, K. and Mehri, B. (2010), "Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories", J. Sound Vib., 329(11), 2241-2264.   DOI
47 Koizumi, M. and Niino, M. (1995), "Overview of FGM Research in Japan", Mrs Bulletin, 20(1), 19-21.
48 Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Mach., 41(4), 421-433.   DOI
49 Li, X.-F. (2008), "A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams", J. Sound Vib., 318(4), 1210-1229.   DOI
50 Jin, C. and Wang, X. (2015), "Accurate free vibration analysis of Euler functionally graded beams by the weak form quadrature element method", Compos. Struct., 125, 41-50.   DOI
51 Narendar, S. (2011), "Mathematical modelling of rotating single-walled carbon nanotubes used in nanoscale rotational actuators", Defence Sci. J., 61(4), 317-324.   DOI
52 Liu, Y., Flood, A.H., Bonvallet, P.A., Vignon, S.A., Northrop, B.H., Tseng, H.R., Jeppesen, J.O., Huang, T.J., Brough, B., Baller, M. and Magonov, S. (2005), "Linear artificial molecular muscles", J. Am. Chem. Soc., 127(27), 9745-9759.   DOI
53 Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in lightdriven molecular motors", J. Organic Chem., 76(21), 8599-8610.   DOI
54 Murmu, T. and Pradhan, S. (2009), "Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM", Physica E: Low-Dimens. Syst. Nanostruct., 41(7), 1232-1239.   DOI
55 Murmu, T. and Adhikari, S. (2010a), "Nonlocal transverse vibration of double-nanobeam-systems", J. Appl. Phys., 108(8), p. 083514.   DOI
56 Murmu, T. and Adhikari, S. (2010b), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12), p. 123507.   DOI
57 Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243.   DOI
58 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312.   DOI
59 Li, J., Wang, X., Zhao, L., Gao, X., Zhao, Y. and Zhou, R. (2014), "Rotation motion of designed nanoturbine", Sci. Reports, 4, p. 5846.
60 Pourasghar, A., Homauni, M. and Kamarian, S. (2015), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanobeam using the eringen nonlocal elasticity theory under axial load", Polymer Composites.
61 Romano, G. and Barretta, R. (2017), "Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams", Compos. Part B: Eng., 14, 184-188. DOI: 10.1016/j.compositesb.2017.01.008   DOI
62 Pradhan, K. and Chakraverty, S. (2013), "Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh-Ritz method", Compos. Part B: Eng., 51, 175-184.   DOI
63 Pradhan, S. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-Dimens. Syst. Nanostruct., 42(7), 1944-1949.   DOI
64 Romano, G. and Barretta, R. (2016), "Comment on the paper "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams by Meral Tuna & Mesut Kirca", Int. J. Eng. Sci., 109, 240-242.   DOI
65 Romano, G., Barretta, R., Diaco, M. and de Sciarra, F.M. (2017), "Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams", Int. J. Mech. Sci., 121, 151-156.   DOI
66 Sankar, B. (2001), "An elasticity solution for functionally graded beams", Compos. Sci. Technol., 61(5), 689-696.   DOI
67 Serreli, V., Lee, C.F., Kay, E.R. and Leigh, D.A. (2007), "A molecular information ratchet", Nature, 445(7127), 523-527.   DOI
68 Sears, A. and Batra, R.C. (2004), "Macroscopic properties of carbon nanotubes from molecular-mechanics simulations", Phys. Rev. B, 69, 235406.   DOI
69 Shafiei, N., Kazemi, M. and Ghadiri, M. (2016a), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44.   DOI
70 Shafiei, N., Kazemi, M. and Ghadiri, M. (2016b), "Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams", Physica E: Low-Dimens. Syst. Nanostruct., 83, 74-87.   DOI
71 Thai, H.-T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64.   DOI
72 Shu, C. (2012), Differential Quadrature and its Application in Engineering, Springer Science & Business Media.
73 Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two‐dimensional incompressible navier-stokes equations", Int. J. Numer. Method. Fluids, 15(7), 791-798.   DOI
74 Simsek, M. (2016), "Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach", Int. J. Eng. Sci., 105, 12-27.   DOI
75 Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386.   DOI
76 Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281   DOI
77 Thai, H.-T. and Vo, T.P. (2012), "A nonlocal sinusoidal shear deformation beam theory with application to bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 54, 58-66.   DOI
78 Tuna, M. and Kirca, M. (2016), "Exact solution of Eringen's nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams", Int. J. Eng. Sci., 105, 80-92.   DOI
79 Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., McGuire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nature Nanotech., 6(10), 625-629.   DOI
80 Shafiei, N., Mousavi, A. and Ghadiri, M. (2016c), "On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams", Int. J. Eng. Sci., 106, 42-56.   DOI
81 Aydogdu, M. and Taskin, V. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656.   DOI
82 Akgoz, B. and Civalek, O. (2014), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225.   DOI
83 Ansari, R. and Sahmani, S. (2012), "Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models", Commun. Nonlinear Sci. Numer. Simul., 17(4), 1965-1979.   DOI
84 Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375(1), 53-62.   DOI
85 Aranda-Ruiz, J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001.   DOI