• Title/Summary/Keyword: Quadrature

Search Result 1,105, Processing Time 0.028 seconds

Design and Implementation of Microstrip Quadrature Coupler and High Power Transmitting/Receiving Switch Using Dynamic Loading Technique for 1-Tesal MRI System (동적 부하 기술을 이용한 1-Tesla 자기공명 영상 시스템용 마이크로 스트립 quadrature coupler 및 고출력 송수신 스위치의 설계 및 제작)

  • 류웅환;이미영;이흥규;이황수;김정호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.3
    • /
    • pp.1-11
    • /
    • 1999
  • It is now common practice to utilize the quadrature RF coils to improve the signal-to-noise ratio (SNR) in the Magnetic Resonance Imaging (MRI) System. In addition, to make such an available SNR improvement, it is mandatory to use a well-designed quadrature coupler, which facilitates a perfect 3-dB coupling and quadrature-phase shift. However, the four ports matching condition has to be well considered during the RF excitation and the signal detection period. This work investigates the effects of such a mismatching condition (especially, due to patient) from the analysis, simulation, and real implementation and firstly proposes dynamic loading technique for a quadrature coupler and transmitting/receiving switch module to minimize a patient mismatching and enhance a system reliability. Also, we designed and implemented the quadrature coupler and transmitting/receiving switch module using microstrip. As a result, the SNR of our MRI system using the microstrip quadrature coupler and transmitting/receiving switch module with dynamic load increases 3 dB compared with the old one using USA quadrature switch. Also, the power capability of quadrature coupler and transmitting/receiving switch module is 5-kw peak power. Considering power loss and reduction of size, we used a RT/duroid 6010 substrate with high permittivity and for simulation we use Compact Software.

  • PDF

A New Quadrature Breast RF Coil for MRI (새로운 자기공명영상촬영용 Quadrature Breast RF 코일)

  • Kim, S.K.;Yang, Y.J.;Lee, D.R.;Yi, Y.;Ahn, C.B.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.291-293
    • /
    • 1997
  • A new quadrature RF coil is designed for Breast MR Imaging. Quadrature RF coils for MRI have been useful to improve the signal-to-noise ratio (SNR) by "$\sqrt{2}$" using two orthogonal RF coils in combination. A modified Breast Quadrature coil is designed. It is a modified type of the high-pass birdcage coil. To reduce the field distortion, by using current feeding, the field pattern is optimized to achieve a quadrature circularly-polarized field pattern. The coil has been implemented for receive-only mode, and tested by phantom imaging. The experimental results show the utility of the proposed RF coil.

  • PDF

Image enhancement using software quadrature detector (소프트웨어 쿼드러춰 검출기를 이용한 영상개선)

  • Ko, Dae-Sik;Kim, Hyun;Jun, Kye-Suk
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.111-116
    • /
    • 1998
  • In this paper, we proposed method of performance enhancement of the ultrasonic imaging system using quadrature detector and implementation of the software quandrature detector. Since the quadrature detector is more sensitive than the enbelope detector of the conventional ultrasonic imaging syustem, we are able to achieve the contrast enhnacement. Although hardware quadrature detector is able to process high sped data acquisition, its hardware has complexity. In order to show the performance of the software quadrature we have constructed ultrasonic signal processing system and obtained the reflected signal from the aluminum specimen using A/D convertor. Our experimental results showed that image of the quadrature detector is better than that of the envelope detector.

  • PDF

Switching between Spatial Modulation and Quadrature Spatial Modulation

  • Kim, Sangchoon
    • International journal of advanced smart convergence
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2019
  • Spatial modulation (SM) is the first proposed space modulation technique. By further utilizing the quadrature spatial dimension, quadrature spatial modulation (QSM) has been developed as an amendment to SM system to enhance the overall spectral efficiency. Both techniques are capable of entirely eliminating interchannel interference (ICI) at the receiver. In this paper, we propose a simple adaptive hybrid switching transmission scheme to obtain better system performance than SM and QSM systems under a fixed transmission date rate. The presented modulator selection criterion for switching between spatial modulator and quadrature spatial modulator is based on the larger received minimum distance of spatial modulator and quadrature spatial modulator to exploit the spatial channel freedom. It is shown through Monte Carlo simulations that the proposed hybrid SM and QSM switching system yields lower error performance than the conventional SM and QSM systems under the same fixed data rate and thus can provide signal to noise ratio (SNR) gain.

Time-discontinuous Galerkin quadrature element methods for structural dynamics

  • Minmao, Liao;Yupeng, Wang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.207-216
    • /
    • 2023
  • Three time-discontinuous Galerkin quadrature element methods (TDGQEMs) are developed for structural dynamic problems. The weak-form time-discontinuous Galerkin (TDG) statements, which are capable of capturing possible displacement and/or velocity discontinuities, are employed to formulate the three types of quadrature elements, i.e., single-field, single-field/least-squares and two-field. Gauss-Lobatto quadrature rule and the differential quadrature analog are used to turn the weak-form TDG statements into a system of algebraic equations. The stability, accuracy and numerical dissipation and dispersion properties of the formulated elements are examined. It is found that all the elements are unconditionally stable, the order of accuracy is equal to two times the element order minus one or two times the element order, and the high-order elements possess desired high numerical dissipation in the high-frequency domain and low numerical dissipation and dispersion in the low-frequency domain. Three fundamental numerical examples are investigated to demonstrate the effectiveness and high accuracy of the elements, as compared with the commonly used time integration schemes.

Quadrature Correlated Superposition Modulation: Practical Perspective of Correlated Superposition Coding

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.17-24
    • /
    • 2021
  • Recently, a lossless non-orthogonal multiple access (NOMA) implementation without successive interference cancellation (SIC) has been proposed in the literature of NOMA. This lossless non-SIC NOMA was achieved via correlated superposition coding (CSC), in contrast to conventional independent superposition coding (ISC). However, only the achievable data rates for CSC NOMA were investigated. Thus, this paper proposes a practical CSC NOMA scheme under Rayleigh fading channel environments. First, we design the practical CSC NOMA scheme, namely quadrature correlated superposition modulation (CSM) NOMA, without channel coding, i.e., uncoded systems. In addition, we calculate the symbol error rates (SERs) for this quadrature CSM NOMA scheme. Then, simulations demonstrate that for the weak channel gain's user, the SER performance of the proposed quadrature CSM NOMA is shown to be improved greatly, compared to that of the conventional quadrature amplitude modulation (QAM) NOMA, whereas for the strong channel gain's user, the SER performance of the proposed quadrature CSM NOMA degrades a little, compared to that of the conventional QAM NOMA. As a result, the proposed quadrature CSM NOMA scheme could be considered as a practical NOMA scheme for CSC NOMA schemes toward the fifth-generation (5G) and next generation communications.

Single-balanced Direct Conversion Quadrature Receiver with Self-oscillating LMV

  • Nam-Jin Oh
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2023
  • This paper proposes two kinds of single-balanced direct conversion quadrature receivers using selfoscillating LMVs in which the voltage-controlled oscillator (VCO) itself operates as a mixer while generating an oscillation. The two LMVs are complementary coupled and series coupled to generate the quadrature oscillating signals, respectively. Using a 65 nm CMOS technology, the proposed quadrature receivers are designed and simulated. Oscillating at around 2.4 GHz frequency, the complementary coupled quadrature receiver achieves the phase noise of -28 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The other series coupled receiver achieves the phase noise of -31 dBc/Hz at 1KHz offset and -109 dBc/Hz at 1 MHz offset frequency. The simulated voltage conversion gain of the two single-balanced receivers is 37 dB and 45 dB, respectively. The double-sideband noise figure of the two receivers is 5.3 dB at 1 MHz offset. The quadrature receivers consume about 440 μW dc power from a 1.0-V supply.