• Title/Summary/Keyword: Quadratic transfer function

Search Result 47, Processing Time 0.023 seconds

Robust Adaptive Control of Hydraulic Positioning System Considering Frequency Domain Performance (주파수역 성능을 고려한 유압 위치시스템의 강인 적응 제어)

  • Kim, Ki-Bum;Kim, In-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • In this paper, a robust MRAC (model reference adaptive control) scheme is applied to control an electrohydraulic positioning system under various loads. The inverse dead-zone compensator in the control system cancels out the dead-zone response, and an integrator added to the controller provides good position-tracking ability. LQG/LTR (linear quadratic Gaussian control with loop transfer recovery) closed-loop model is used as the reference model for learning the MRAC system. LQG/LTR provides a systematic technique to design the linear controller that optimizes the objective function using some compromise between the control effort and the system performance in the frequency domain. Different external load tests are performed to investigate the effectiveness of the designed MRAC system in real time. The experimental results show that the tracking performance of the proposed system is highly accurate, which offers considerable robustness even with a large change in the load.

A comparative assessment of approximate methods to simulate second order roll motion of FPSOs

  • Somayajula, Abhilash;Falzarano, Jeffrey
    • Ocean Systems Engineering
    • /
    • v.7 no.1
    • /
    • pp.53-74
    • /
    • 2017
  • Ship shaped FPSO (Floating Production, Storage and Offloading) units are the most commonly used floating production units to extract hydrocarbons from reservoirs under the seabed. These structures are usually much larger than general cargo ships and have their natural frequency outside the wave frequency range. This results in the response to first order wave forces acting on the hull to be negligible. However, second order difference frequency forces start to significantly impact the motions of the structure. When the difference frequency between wave components matches the roll natural frequency, the structure experiences a significant roll motion which is also termed as second order roll. This paper describes the theory and numerical implementation behind the calculation of second order forces and motions of any general floating structure subjected to waves. The numerical implementation is validated in zero speed case against the commercial code OrcaFlex. The paper also describes in detail the popular approximations used to simplify the computation of second order forces and provides a discussion on the limitations of each approximation.

Receding horizon predictive controls and generalized predictive controls with their equivalance and stability

  • Kwon, Wook-Hyun;Lee, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.49-55
    • /
    • 1992
  • In this paper, we developed a Receding Horizon Predictive Control for Stochastic state space models(RHPCS). RHPCS was designed to minimize a quadratic cost function. RHPCS consists of Receding Horizon Tracking Control(RHTC) and a state observer. It was shown that RHPCS is equivalent to Generalized Predictive Control(GPC) when the underlying state space model is equivalent to the I/O model used in the design of GPC. The equivalence between GPC and RHPCS was shown through. the comparison of the transfer functions of the two controllers. RHPCS provides a time-invarient optimal control law for systems for which GPC can not be used. The stability properties of RHPCS was derived. From the GPC's equivalence to RHPCS, the stability properties of GPC were shown to be the same as those for RHTC.

  • PDF

Tolerance Analysis and Design Improvement of a Lens System for Mobile Phone Camera (휴대폰용 카메라 모듈의 렌즈 시스템에 대한 공차 해석 및 설계 개선에 관한 연구)

  • Jung, Sang-Jin;Choi, Byung-Lyul;Choi, Dong-Hoon;Kim, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1063-1068
    • /
    • 2008
  • A lens system of a camera module for mobile phones is comprised of the composition and design of various shapes of lens. To improve responses such as the modular transfer function (MTF), a lens system should always be constructed by considering uncertainty that can be caused by manufacturing and assembly error. In this study, tolerance optimization using the Latin Hypercube Sampling (LHS) technique is performed. In order to reduce the computational burden of the tolerance optimization process and decrease the influence from numerical noise effectively, we use the Progressive Quadratic Response Surface Modeling (PQRSM), which is one of Sequential Approximate Optimization (SAO) techniques. Using this method, we achieved optimal tolerance for each lens and obtained reliability for satisfying user‘s requirements. In addition, through the design process the manufacturing and assembly cost of a lens system was reduced.

  • PDF

Design Optimization of a Fan-Shaped Film-Cooling Hole Using a Radial Basis Neural Network Technique (홴형상 막냉각홀의 신경회로망 기법을 이용한 최적설계)

  • Lee, Ki-Don;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2009
  • Numerical design optimization of a fan-shaped hole for film-cooling has been carried out to improve film-cooling effectiveness by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. The injection angle of hole, lateral expansion angle of hole and ratio of length-to-diameter of the hole are chosen as design variables and spatially averaged film-cooling effectiveness is considered as an objective function which is to be maximized. Twenty training points are obtained by Latin Hypercube sampling for three design variables. Sequential quadratic programming is used to search for the optimal point from the constructed surrogate. The film-cooling effectiveness has been successfully improved by the optimization with increased value of all design variables as compared to the reference geometry.

Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique (신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화)

  • Raza, Wasim;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

Estimation of Pile Shaft Resistances with Elastic Modulus Depending on Strain (변형률에 따른 탄성계수 변화를 고려한 말뚝의 주면지지력 산정)

  • Kim, Seok-Jung;Kim, Sung-Heon;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.933-943
    • /
    • 2009
  • Axial loads and shaft resistances can be calculated by load transfer analysis using strain data with load level. In load transfer analysis, the elastic modulus of concrete is a one of the most important parameters to consider. The elastic modulus, $E_{50}$, suggested by ACI (American Concrete Institute), has been commonly used. However, elastic modulus of concrete shows nonlinear stress-strain characteristic, so nonlinearity should be considered in load transfer analysis. In this paper, a load transfer analysis was performed by using data obtained from bi-directional pile load tests for four cases of drilled shafts. For consideration of nonlinearity, elastic modulus was calculated by both the Fellenius method and the nonlinear method, assuming the stress-strain relation of concrete to be a quadratic function, and then, the calculated elastic modulus was applied to the estimation of shaft resistance. The calculated shaft resistances were compared with the result obtained using the constant elastic modulus of ACI code. It was found that the f-w curves are similar to each method, and elastic modulus and shaft resistances decreased as strain increased. Moreover, shaft resistances estimated from elastic modulus considering nonlinearity were 5~15% different than those obtained using the constant elastic modulus.

  • PDF

A Sham Experiment for the Measurement of Nonlinear Pulse Propagation Characteristics of Blood Vessel Using Bispectral Analysis (바이스펙트럼해석을 이용한 혈관의 비선형 맥동전파특성 계측에 대한 모의실험)

  • 장경영;김경조
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.525-532
    • /
    • 1995
  • In this paper, a new try to measure nonlinear propagation characteristics of the pulse along blood vessel by using bispectral analysis is introduced, and the possibility of its application to the medical diagnosis is shown. In this method, the waveforms of pulse motion of blood vessel at two separated measuring points on the wall were detected from Doppler frequency modulation of transmitted probing ultrasonic waves. Then the auto- and crossbispectrum of detected waveforms are calculated to estimate the quadratic NTF (nonlinear transfer function) between the two measuring positions. In order to show relationships between the NTF and the nonlinear propagation characteristics, computer simulations have been performed. As the propagation distance increases, harmonic frequency components in NTF increases broadly due to the nonlinear effect in the propagation of blood pulse. In order to represent this phenomena quantitatively, we propose a new parameter, dispersion ratio of WTF. Basic experimental system was constructed by using 3.5MHz probing ultrasonic waves and the preliminary experiments were carried out on ague phantom and human body. Experimental results showed the validity of the measurement system enoughly.

  • PDF

Application of Optimal Control Techniques to SWATH Motion Control (반잠수 쌍동선의 최적 운동제어기 설계)

  • Chan-Wook Park;Bo-Hyeon Heo;Chun-Tae Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.65-77
    • /
    • 1994
  • This paper presents a derailed application procedure of the linear quadratic(LQ) theory for a SWATH heave and pitch control. A time domain model of coupled, linear time-invariant second order differential equations is derived from the frequency response model with the frequency dependent added mass and damping approximated as constant values at the heave natural frequency. Wave exciting forces are modeled as a sum of sinusoids. A systematic selection procedure of state and control weighting matrices is presented to obtain good transient behavior and acceptable fin movement. The validity of this controller design process is throughly investigated by simulations both in time domain and frequency domain and singular value plots of transfer function matrices. The finally designed control system shows good overall performances revealing that the applicability of the present study is proved successful.

  • PDF

Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

  • Chuang, Zhenju;Liu, Shewen;Lu, Yu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.367-375
    • /
    • 2020
  • This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.