An optimal controller, e.g. LQG controller, may not be realistic in the sense that the required control power may not be achieved by existing actuators, and the measured output is not satisfactory. To be realistic, the controller should meet such constraints as sensor or actuator limitation, performance limit, etc. In this paper, the lnput/Output Variance Constrained (IOVC) control problem will be considered from the viewpoint of mathematical programming. A dual version shall be developed to solve the IOVC control problem, whose objective is to find a stabilizing control law attaining a minimum value of a quadratic cost function subject to the inequality constraint on each input and output variance for a stabilizable and detectable plant. One approach to the constrained optimization problem is to use the Kuhn-Tucker necessary conditions for the optimality and to seek an optimal point by an iterative algorithm. However, since the algorithm uses only the necessary conditions, the convergent point may not be optimal solution. Our algorithm will guarantee a sufficiency.
The problem of scheduling n jobs on a single machine is considered when the machine is subject to stochastic breakdowns. The objective is to minimize the weighted squared deviation of job completion times from a common due date. Two versions of the problem are addressed. In the first one the common due date is a given constant, whereas in the second one the common due date is a decision variable. In each case, a general form of deterministic equivalent of the stochastic scheduling problem is obtained when the counting process N(t) related to the machine uptimes is a Poisson process. It is proved that an optimal schedule must be V-shaped in terms of weighted processing time when the agreeable weight condition is satisfied. Based on the V-shape property, two dynamic programming algorithms are proposed to solve both versions of the problem.
Journal of the Korean Society of Mechanical Technology
/
v.20
no.6
/
pp.809-817
/
2018
The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix $A_r$ by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.
Journal of the Korean Society of Manufacturing Technology Engineers
/
v.9
no.2
/
pp.59-65
/
2000
In this paper the comparison of the first order approximation schemes such as SLP(sequential linear programming) CONLIN(convex linearization) MMA(method of moving asymptotes) and the second order approximation scheme SQP(sequential quadratic programming) was accomplished for optimization of nonlinear structures. It was found that MMA and SQP are the most efficient methods for optimization. But the number of function call of SQP is much more than that of MMA. Therefore when it is considered with the expense of computation MMA is more efficient than SQP. In order to examine the efficiency of MMA for complex optimization problem it was applied to the helicopter tail boom con-sidering column buckling and local wall buckling constraints. it is concluded that MMA can be a very efficient approxima-tion scheme from simple problems to complex problems.
Journal of the military operations research society of Korea
/
v.30
no.1
/
pp.1-14
/
2004
In this paper, we propose a new data-mining-based methodology for military occupational specialty assignment. The proposed methodology consists of two phases, feature selection and man-power assignment. In the first phase, the k-means partitioning algorithm and the optimal variable weighting algorithm are used to determine attribute weights. We address limitations of the optimal variable weighting algorithm and suggest a quadratic programming model that can handle categorical variables and non-contributory trivial variables. In the second phase, we present an integer programming model to deal with a man-power assignment problem. In the model, constraints on demand-supply requirements and training capacity are considered. Moreover, the attribute weights obtained in the first phase for each specialty are used to measure dissimilarity. Results of a computational experiment using real-world data are provided along with some analysis.
This paper presents an optimization method for optimal reactive power dispatch which minimizes real power loss and improves voltage profile of power systems using evolutionary computation such as genetic algorithms(GAs), evolutionary programming(EP). and evolution strategy(ES). Many conventional methods to this problem have been proposed in the past, but most these approaches have the common defect of being caught to a local minimum solution. Recently, global search methods such as GAs, EP, and ES are introduced. The proposed methods were applied to the IEEE 30-bus system. Each simulation result, compared with that obtained by using a conventional gradient-based optimization method, Sequential Quadratic Programming (SQP), shows the possibility of applications of evolutionary computation to large scale power systems.
The Transactions of the Korean Institute of Electrical Engineers
/
v.38
no.12
/
pp.995-1006
/
1989
If robots have the ability to track the parts on a moving conveyor belt, the efficiency of the manipulation tasks will be increased. This paper presents a motion planning algorithm for conveyor tracking. Tracking trajectory of a robot manipulator is determined by belt speed, initial part position, and initial robot position. Torque limit, maximum velocity, maximum acceleration and maximum jerk are also taken into account. To obtain the tracking solution, the problem is converted to the linear quadratic tracking problem. We describe the manipulator dynamics as second order state equation using parametric functions. Constraints on torques and smoothness are converted to those on input and state variables. The solution of the state equation which minimizes the performance index is obtained by dynamic programming method. Numerical examples are then presented to demonstrate the utility of the motion planning method developed.
In this paper we research the problem in which the objective is to minimize the sum of squared deviations of job expected completion times from the due date, and the job processing times are stochastic. In the problem the machine is subject to stochastic breakdowns and all jobs are preempt-repeat. In order to show that the replacing ESSD by SSDE is reasonable, we discuss difference between ESSD function and SSDE function. We first give an express of the expected completion times for both cases without resampling and with resampling. Then we show that the optimal sequence of the problem V-shaped with respect to expected occupying time. A dynamic programming algorithm based on the V-shape property of the optimal sequence is suggested. The time complexity of the algorithm is pseudopolynomial.
International Journal of Aeronautical and Space Sciences
/
v.12
no.3
/
pp.288-295
/
2011
This paper addresses minimum-fuel, two-dimensional trajectory optimization for a soft lunar landing from a parking orbit to a desired landing site. The landing site is usually not considered when performing trajectory optimization so that the landing problem can be handled. However, for precise trajectories for landing at a desired site to be designed, the landing site has to be considered as the terminal constraint. To convert the trajectory optimization problem into a parameter optimization problem, a pseudospectral method was used, and C code for feasible sequential quadratic programming was used as a numerical solver. To check the reliability of the results obtained, a feasibility check was performed.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.4
/
pp.85-92
/
2018
Reductions of the electricity charge are achieved by demand management of the load. The demand management method of the load using ESS involves peak shifting, which shifts from a high demand time to low demand time. By shifting the load, the peak load can be lowered and the energy charge can be saved. Electricity charges consist of the energy charge and the basic charge per contracted capacity. The energy charge and peak load are minimized by Linear Programming (LP) and Quadratic Programming (QP), respectively. On the other hand, each optimization method has its advantages and disadvantages. First, the LP cannot separate the efficiency of the ESS. To solve these problems, the charge and discharge efficiency of the ESS was separated by Mixed Integer Linear Programming (MILP). Nevertheless, both methods have the disadvantages that they must assume the reduction ratio of peak load. Therefore, QP was used to solve this problem. The next step was to optimize the formula combination of QP and LP to minimize the electricity charge. On the other hand, these two methods have disadvantages in that the charge and discharge efficiency of the ESS cannot be separated. This paper proposes an optimization method according to the situation by analyzing quantitatively the advantages and disadvantages of each optimization method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.