• Title/Summary/Keyword: QWERTY Type

Search Result 9, Processing Time 0.021 seconds

Symbol Characters Allocation of a QWERTY Type Keyboard Design for Smartphones

  • Kim, Kuk
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.408-413
    • /
    • 2014
  • The QWERTY type keyboard is a classical device that has been used for computers for a long time. The keyboard design of mobile devices like smartphones is an important issue to consider because of the limited space on the touch screen. This paper presents a design for symbol allocation on the QWERTY type soft keyboard. A 27-cell model, including the full stop (.), is proposed in this paper. A QWERTY type keyboard for smartphones is mainly known for its spatial compatibility, whereas the characters of the ANSI keyboard are allocated to the shoulder positions for functional auxiliary input methods such as the long pressing method.

A Comparison of Usability between the Height Adjustable Keyboard and the Adaptive Touch Keyboard on Smartphones

  • Choi, Jinhae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.145-156
    • /
    • 2017
  • Objective: This study aims to compare the usability of the adaptive touch design method with that of the height adjustable design method that are applied to the Korean QWERTY keyboard and Naratgul keyboard on smartphones, examine the results, and present practical implications. Background: Smartphone manufacturers have failed to satisfy every user with their uniform touch keyboard designs that do not consider the high use rates of keypad use. In reality, touch keyboard designing customized for every individual is impossible, but there need to be researches on was to improve usability by having touch areas changed automatically depending on user behaviors or having users adjust the keyboard height depending on their hand size. Method: As for the design methods, an object group was given smartphones with the adaptive touch design method and the other group those with the height adjustable design method. As they entered the same characters in the smartphones, typing error rates and text input speed were measured and the average values were compared. 35 individuals who would frequently use smartphones in daily life participated in the experiment. The group variable was the type of touch keyboards, and the test variables were typing error rates and text input speed, for which a T-test was implemented. Results: As for the QWERTY keyboard, the significant improvement effect was verified as the typing error rate of the adaptive touch design method was 4.21% but that of the height adjustable design method was 3.28% although there was no significant difference in terms of text input speed. As for the Naratgul keyboard, in contrast, the typing error rate of the adaptive touch design method was 2.5% while that of the height adjustable design method was 1.48%, which indicates a measure of improvement, but the effect was not significant. On the other hand, the text input speed per minute was improved as much as 22.2%, which is significant. Conclusion: First, the Korean touch keyboard usability of the adaptive touch design method and that of the height adjustable design method, when applied to Model A of Company L, showed significant difference from each other. Second, the height adjustable design method was applied to the QWERTY keyboard, the typing error rate was improved significantly. This indicates that as the keyboard height was raised, the number of buttons within the range of fingering decreased, decreasing the touch bias was reduced. Third, the height adjustable design method was applied to the Naratgul keyboard, the text input speed was improved. Application: When the QWERTY keyboard was applied to a smartphone as small as 5.5inch or less, it is highly probably that the height adjustable design method decreases the typing error rate. It may be considered to develop additional UX functions to make the keyboard font larger or give users the option to adjust button intervals in utilization of the SW advantages of the height adjustable design method.

One-key Keyboard: A Very Small QWERTY Keyboard Supporting Text Entry for Wearable Computing (원키 키보드: 웨어러블 컴퓨팅 환경에서 문자입력을 지원하는 초소형 QWERTY 키보드)

  • Lee, Woo-Hun;Sohn, Min-Jung
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.21-28
    • /
    • 2006
  • Most of the commercialized wearable text input devices are wrist-worn keyboards that have adopted the minimization method of reducing keys. Generally, a drastic key reduction in order to achieve sufficient wearability increases KSPC(Keystrokes per Character), decreases text entry performance, and requires additional effort to learn a new typing method. We are faced with wearability-usability tradeoff problems in designing a good wearable keyboard. To address this problem, we introduced a new keyboard minimization method of reducing key pitch. From a series of empirical studies, we found the potential of a new method which has a keyboard with a 7mm key pitch, good wearability and social acceptance in terms of physical form factors, and allows users to type 15.0WPM in 3 session trials. However, participants point out that a lack of passive haptic feedback in keying action and visual feedback on users' input deteriorate the text entry performance. We have developed the One-key Keyboard that addresses this problem. The traditional desktop keyboard has one key per character, but the One-key Keyboard has only one key ($70mm{\times}35mm$) on which a 10*5 QWERTY key array is printed. The One-key Keyboard detects the position of the fingertip at the time of the keying event and figures out the character entered. We conducted a text entry performance test comprised of 5 sessions. The participants typed 18.9WPM with a 6.7% error rate over all sessions and achieved up to 24.5WPM. From the experiment's results, the One-key Keyboard was evaluated as a potential text input device for wearable computing, balancing wearability, social acceptance, input speed, and learnability.

  • PDF

The Measurement of Skilled Typist's Typing Position for Developments of New Text Entry Input Device (새로운 문자입력장치 개발을 위한 숙련타이피스트의 타이핑 위치 측정)

  • 김진영;이호길;황성호;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.125-130
    • /
    • 2001
  • Skilled typists can type characters or words without looking at keyboard, relying on the finger's relative position. If the relative positions of the fingers can be identified, a virtual keyboard may be accomplished by applying the concept of "DataGlove" or "FingerRing". The virtual keyboard may be efficient as a new mobile input device supporting QWERTY keyboard layout. For the purpose of investigating skilled typing pattern, in this paper the touch-positions of the fingers are measured with a touchscreen while five skilled typists type a long sentence. From these measurements it can be observed that the groups of touch-positions are classified into alphabet characters. Though there are some overlapped groups we can find constant distances capable of being discriminated among the groups from investigation of the change of touch-position for touch-time. Based on the analysis, the prediction algorithm of the constant distance is proposed and evaluated, which is useful for realization of a portable virtual keyboard.le virtual keyboard.

  • PDF

Learning of Skilled Typist´s Finger Positioning for New Input Device Scheme

  • Kim, Jin-Young;Lee, Ho-Gil;Hwang, Sung-Ho;Park, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.153.4-153
    • /
    • 2001
  • Skilled typists can type characters or wrds without looking at keyboard, relying on the finger´s relative position. If the relative positions of the fingers can be identified, a virtual keyboard may be accomplished by applying the concept of "DataGlove" or "FingerRing". The virtual keyboard may be efficient as a new mobile input device supporting QWERTY keyboard layout. For the purpose of investigating skilled typing pattern, in this paper the touch-positions of the fingers are measured with a touchscreen while four skilled typists type a long sentence. From these measurements it can be observed that the groups of touch-positions are classified into alphabet characters. Though there are some overlapped groups we can find constant distances capable of being discriminated ...

  • PDF

Comparative Study of Text Entry Speed and Accuracy Using the Three Different Keyboard Type in Students with Cerebral Palsy: Case Study (키보드 유형에 따른 뇌성마비 학생의 문자입력 속도 및 정확도 비교: 사례연구)

  • Jeong, Dong-Hoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.10 no.1
    • /
    • pp.23-35
    • /
    • 2015
  • PURPOSE: People with physical disabilities such as cerebral palsy usually experience obstacles when interacting with computer through conventional keyboard because of their motor disabilities. The purpose of this study is empirically compare of text entry(alphabet and word) speed and accuracy using the three different keyboard type on four students(male 2 and female 2) with cerebral palsy. METHODS: This research design used a replicated single-case experimental approach to compare the individual performance. An alternating treatments design was used to examine the effectiveness of standard QWERTY keyboard and alternative keyboard(mini and big keyboard) on computer access for students with cerebral palsy. To avoid changes in posture that influence a keyboard character entry training and evaluation was carried out using his sitting in a wheelchair. Compass software program used in this study as an assessment tool to measure speed and accuracy when performance of text entry(alphabet and word). This was repeated until the stable status of reaction time. RESULTS: As a result, the alternative keyboard seems to be the most effective device for students with cerebral palsy to perform text entry. But various factors such as peculiarity of motor disabilities, experience and preferences of the user are heavily related. CONCLUSION: Thus, we must perform the objective and systematic assessment for computer access and if sustained training is accomplished, it could to improve speed and accuracy of text entry(alphabet and word).

A Study on Key Arrangement of Virtual Keyboard based on Eyeball Input system (안구 입력 시스템 기반의 화상키보드 키 배열 연구)

  • Sa Ya Lee;Jin Gyeong Hong;Joong Sup Lee
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.94-103
    • /
    • 2024
  • The eyeball input system is a text input system designed based on 'eye tracking technology' and 'virtual keyboard character-input technology'. The current virtual keyboard structure used is a rectangular QWERTY array optimized for a multi-input method that simultaneously utilizes all 10 fingers on both hands. However, since 'eye-tracking technology' is a single-input method that relies solely on eye movement, requiring only one focal point for input, problems arise when used in conjunction with a rectangular virtual keyboard structure designed for multi-input method. To solve this problem, first of all, previous studies on the shape, type, and movement of muscles connected to the eyeball were investigated. Through the investigation, it was identified that the principle of eye movement occurs in a circle rather than in a straight line. This study, therefore, proposes a new key arrangement wherein the keys are arranged in a circular structure suitable for rotational motion rather than the key arrangement of the current virtual keyboard which is arranged in a rectangular structure and optimized for both-hand input. In addition, compared to the existing rectangular key arrangement, a performance verification experiment was conducted on the circular key arrangement, and through the experiment, it was confirmed that the circular arrangement would be a good replacement for the rectangular arrangement for the virtual keyboard.

Comparison of Soft Keyboard Types for Stylus Pen and Finger-based Interaction on Tablet PCs (태블릿 PC에서의 스타일러스 펜 및 손 기반인터랙션을 위한 소프트 키보드 타입 비교)

  • Ahn, Jinho;Ahn, Junyoung;Lee, Jai Ill;Kim, Kyungdoh
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.1
    • /
    • pp.57-64
    • /
    • 2016
  • Pen-based interaction is universally available on smart devices and especially on Tablet PCs. Previous studies compared various input methods like fingers, a mouse or a stylus pen on PCs or on a touchscreen based devices such as smart phones. At the same time, various soft keyboard applications are being developed on application stores of smart devices. However, these previous studies did not suggest which one is a suitable keyboard application for Tablet PCs when users perform a certain interaction as input type. In this study, we compared two types of input methods (finger and pen) and three types of soft keyboard applications (QWERTY, Gesture and Swype) in a Tablet PC using performance measurements (accuracy and input speed) and discussed what types of applications showed better performance with each interaction on tablet PC. From these results, recommendations for the keyboard types depending on the input methods on tablet PCs were developed.

Hunminjungum Keypad (훈민정음 글자판)

  • Kim, Sungwook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.29-49
    • /
    • 2021
  • This paper proposes the Hunminjungum Keypad that applied the creation principle of Hunminjungum to the design of keypad. The proposed keypad arranged 28 letters of Hunminjungum to have correlations with each other between consonants, between vowels, and between consonants and vowels. That is, Consonant buttons are arranged by grouping letters of the same sound by sounds of five voices. And the vowel buttons are arranged at the bottom and the right side of the consonant area according to the position where a vowel is attached to the consonant. In the meantime, Hangul keypads have mainly used 12 button keypads in 4 lines and 3 columns. These keypads have structurally disadvantageous in the touch count and moving distance. Recently, keypads with many letter buttons such as QWERTY and single-vowel are also used a lot. If the number of letter buttons provided in the keypad increases, touch count decreases. And If the letter buttons are arranged to have a correlation with each other, the moving distance becomes smaller. The experimental results show that the proposed keypad has high efficiency in all evaluation factors such as touch count, moving distance and input time.