• Title/Summary/Keyword: QUORUM

Search Result 197, Processing Time 0.027 seconds

Secure Quorum-based Location Service for Ad hoc Position-based Routing (애드혹 위치기반 라우팅을 위한 안전한 쿼럼기반 위치 서비스)

  • Lim, Ji-Hwan;Oh, Hee-Kuck;Kim, Sang-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.4
    • /
    • pp.21-35
    • /
    • 2007
  • In ad hoc networks, position-based routing schemes, that use geographical positions of nodes, have been proposed to efficiently route messages. In these routing schemes, the location service is one of the key elements that determines and effects security and efficiency of the protocol. In this paper, we define security threats of location service and propose a new quorum based location service protocol. In our proposed protocol, nodes register their public keys in other nodes during the initialization phase and these registered keys are used to verify locations of other nodes and the messages exchanged. In this paper, we prove that our protocol is robust against traditional attacks and new attacks that may occur due to the use of position-based routing. We also analyze the efficiency of our protocol using various simulations.

Chemical signalling within the rumen microbiome

  • Katie Lawther;Fernanda Godoy Santos;Linda B Oyama;Sharon A Huws
    • Animal Bioscience
    • /
    • v.37 no.2_spc
    • /
    • pp.337-345
    • /
    • 2024
  • Ruminants possess a specialized four-compartment forestomach, consisting of the reticulum, rumen, omasum, and abomasum. The rumen, the primary fermentative chamber, harbours a dynamic ecosystem comprising bacteria, protozoa, fungi, archaea, and bacteriophages. These microorganisms engage in diverse ecological interactions within the rumen microbiome, primarily benefiting the host animal by deriving energy from plant material breakdown. These interactions encompass symbiosis, such as mutualism and commensalism, as well as parasitism, predation, and competition. These ecological interactions are dependent on many factors, including the production of diverse molecules, such as those involved in quorum sensing (QS). QS is a density-dependent signalling mechanism involving the release of autoinducer (AIs) compounds, when cell density increases AIs bind to receptors causing the altered expression of certain genes. These AIs are classified as mainly being N-acyl-homoserine lactones (AHL; commonly used by Gram-negative bacteria) or autoinducer-2 based systems (AI-2; used by Gram-positive and Gram-negative bacteria); although other less common AI systems exist. Most of our understanding of QS at a gene-level comes from pure culture in vitro studies using bacterial pathogens, with much being unknown on a commensal bacterial and ecosystem level, especially in the context of the rumen microbiome. A small number of studies have explored QS in the rumen using 'omic' technologies, revealing a prevalence of AI-2 QS systems among rumen bacteria. Nevertheless, the implications of these signalling systems on gene regulation, rumen ecology, and ruminant characteristics are largely uncharted territory. Metatranscriptome data tracking the colonization of perennial ryegrass by rumen microbes suggest that these chemicals may influence transitions in bacterial diversity during colonization. The likelihood of undiscovered chemicals within the rumen microbial arsenal is high, with the identified chemicals representing only the tip of the iceberg. A comprehensive grasp of rumen microbial chemical signalling is crucial for addressing the challenges of food security and climate targets.

Solid Phase Synthesis of N-(3-hydroxysulfonyl)-L-homoserine Lactone Derivatives and their Inhibitory Effects on Quorum Sensing Regulation in Vibrio harveyi (고체상 합성법에 의해 합성된 N-(3-hydroxysulfonyl)-L-homoserine Lactone 유사체들의 Vibrio harveyi 쿼럼 센싱에 대한 저해 효과)

  • Kim, Cheol-Jin;Park, Hyung-Yeon;Kim, Jae-Eun;Park, Hee-Jin;Lee, Bon-Su;Choi, Yu-Sang;Lee, Joon-Hee;Yoon, Je-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.248-257
    • /
    • 2009
  • The inhibitors against Vibrio harveyi quorum sensing (QS) signaling were developed by modifying the molecular structure of the major signal, N-3-hydroxybutanoyl-L-homoserine lactone (3-OH-$C_4$-HSL). A series of structural derivatives, N-(3-hydroxysulfonyl)-L-homoserine lactones (HSHLs) were synthesized by the solid-phase organic synthesis method. The in vivo QS inhibition by these compounds was measured by a bioassay system using the V. harveyi bioluminescence, and all showed significant inhibitory effects. To analyze the interaction between these compounds and LuxN, a 3-OH-$C_4$-HSL receptor protein of V. harveyi, we tentatively determined the putative signal binding domain of LuxN based on the sequence homology with other acyl-HSL binding proteins, and predicted the partial 3-D structure of the putative signal binding domain of LuxN by using ORCHESTRA program, and further estimated the binding poses and energies (docking scores) of 3-OH-$C_4$-HSL and HSHLs within the domain. In comparison of the result from this modeling study with that of in vivo bioassay, we suggest that the in silica interpretation of the interaction between ligands and their receptor proteins can be a valuable way to develop better competitive inhibitors, especially in the case that the structural information of the protein is limited.

Analysis of Amino Acid Residues Affecting the Activity of QscR, a Quorum Sensing Receptor of Pseudomonas aeruginosa (녹농균(Pseudomonas aeruginosa)의 쿼럼 센싱 수용체인 QscR의 활성에 영향을 미치는 아미노산 잔기 분석)

  • Park, Su-Jin;Kim, Soo-Kyoung;Lee, Joon-Hee
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.180-186
    • /
    • 2012
  • Pseudomonas aeruginosa, a Gram-negative bacterium, is an ubiquitous and opportunistic human pathogen, which expresses many virulence factors through quorum sensing (QS) regulation. QscR, one of the QS signal receptors of P. aeruginosa, has unique features that make it possible to distinguish QscR from other QS receptors. In the present study, we focused on amino acid residues responsible for such a broad signal specificity of QscR. Thus we constructed mutant QscRs: $QscR_{T72I}$, $QscR_{R132M}$, and $QscR_{T140I}$ by substituting $72^{nd}$ threonine, $132^{nd}$ arginine, and $140^{th}$ threonine residues with isoleucine, methionine, and isoleucine, respectively by site-directed mutagenesis. When we examined the activity of these mutant QscRs, $QscR_{R132M}$ failed to respond to N-3-oxododecanoyl homoserine lactone (3OC12-HSL), but $QscR_{T72I}$ and $QscR_{T140I}$ remained the ability to respond to 3OC12-HSL despite much reduction of the sensitivity. When we treated a variety of acyl-HSLs with different structure, $QscR_{T72I}$ and $QscR_{T140I}$ showed better responsiveness to N-decanoyl HSL (C10-HSL) or N-dodecanoyl HSL (C12-HSL) that has no oxo-moiety at $3^{rd}$ carbon of acyl group than to 3OC12-HSL, and $QscR_{R132M}$ showed no responsiveness to any acyl-HSLs tested here. In addition, $QscR_{T72I}$ and $QscR_{T140I}$ were inhibited by 5f, a QscR inhibitor as similarly as wild type QscR was. These results suggest that while the $130^{th}$ arginine is crucial in both activity and acyl-HSL binding of QscR, the $72^{nd}$ and $140^{th}$ threonines are important in the activity, but they are little responsible for the discrimination of acyl-HSLs or competitive inhibitor.

Group Mutual Exclusion Algorithm Using RMS in Community Computing Environments (커퓨니티 컴퓨팅 환경에서 자원 관리 서비스를 이용한 그룹 상호 배제 알고리즘)

  • Park, Chang-Woo;Kim, Ki-Young;Jung, Hye-Dong;Kim, Seok-Yoon
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.281-283
    • /
    • 2009
  • Forming Community is important to manage and provide the service in Ubiquitous Environments including embedded tiny computers. Community Computing is that members constitute the community and cooperate. A mutual exclusion problem occurs when many processors try to use one resource and race condition happens. In the expanded concept, a group mutual exclusion problem is that processors in the same group can share the resource but processors in different groups cannot share. As mutual exclusion problems might be in community computing environments, we propose algorithm which improves the execution speed using RMS (resource management service). In this paper describes proposed algorithm and proves its performance by experiments, comparing proposed algorithm with previous method using quorum-based algorithm.

  • PDF

A Reconstruction Method of HQC structure for Improving Availability of Data in Distributed Environment (분산환경에서의 데이터 가용성 향상을 위한 HQC 구조의 재고성 방법)

  • 유현창;조동영;손진곤;황종선
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.2
    • /
    • pp.1-9
    • /
    • 1994
  • In distributed environments, data replication increases availability and decreases communication cost. However, it is difficult to maintain consistency and availability of data if site failure occurs. When we use the conventional hierarchical quorum consensus(HQC) method in order to maintain the consistency of data, occurrence of site failures makes it harder to perform the operation on replicated data because of insufficient votes. The objective of this paper is to improve the possibility of retaining necessary votes by reconstructing the HQC structure, when the site failure occurs. Furthermore, we compare the modified HQC method with the conventional HQC and QC methods in terms of improvement of availability.

  • PDF

A Secure Distributed Protocol based on Group Mutual Exclusion (그룹상호배제 기반의 안전한 분산프로토콜)

  • 박재혁;김광조
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.07a
    • /
    • pp.283-288
    • /
    • 2003
  • 이 논문에서는 Manabe[2]에 의해 제안된 그룹상호배제를 위한 쿼럼(Quorum)기반의 알고리즘을 바탕으로 암호 기법을 이용한 보다 안전한 분산 알고리즘에 대하여 논한다. 그룹 상호배제는 하나의 리소스를 같은 그룹 내의 모든 프로세스에 의해서 공유되도록 할 수 있는 상호배제의 일반화이다[1][4]. 하지만, 다른 그룹의 프로세스들은 상호 배타적인 방법으로 하나의 리소스를 사용하도록 요청된다. 즉, 다른 그룹의 프로세스들은 이미 임계영역에 있는 프로세스가 그 리소스에 대한 사용이 끝난 후 임계영역에 들어갈 수 있다. 분산 컴퓨팅 분야에서 계속적으로 제안된 알고리즘은 실제 개방된 인터넷상에서 각 프로세스들 간의 안전한 통신이 이루어져야 함에도 불구하고 프로세스들 간의 상호배제에만 초점을 맞춤으로서 안전성을 전혀 고려하지 않고 있다. 이 논문에서는 분산알고리즘에 암호학적 기법을 적용한 안전한 분산 알고리즘을 제시한다.

  • PDF

A target-specific bioassay for screening of bioactive AHL-analogues from natural products

  • Kim, Young-Hee;Kim, Jung-Sun;Park, Sung-Hoon
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.411-414
    • /
    • 2002
  • Acylated homoserine lactones (AHLs) are membrane-permeant signal molecules responsible for biofilm formation of gram-negative bacteria via a unique mechanism known as quorum sensing. A target specific bioassay employing the AHL-responsive Agrobacterium tumefaciens reporter strain has been developed to identify new AHL-like compounds from natural products, which could be developed into antifouling compounds. By varying the X-gal concentration, incubation time, solvent for sample preparation and the sample loading procedure, it was possible to detect low level AHLs up to $10^1nM$. The length of the acyl chain of the AHLs was found to affect the sensitivity of this bioassay.

  • PDF

Post Genomic Approaches to Nodulation in Soybean

  • Hwang, Cheol-Ho;Lim, Chae-Woo
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.13-17
    • /
    • 2004
  • An interaction between Legumes and Rhizobia establishes a symbiotic new organ, the nodule that supports atmospheric nitrogen fIxation. The specific communications between the microbes and legume plants are necessary for both nodulation and nitrogen fixation. Through genetic and biochemical analyses several genes playing pivotal roles in nodulation had been identified to be a receptor kinase like CALVATAl involved signal transduction for development. This emphasizes peptides as signals to be transmitted for a short or long distance transport for nodulation. In addition, a quorum sensing in rhizobia has become a focus as counterpart signal. In an attempt to reveal proteins factors and signaling molecules acting on nodulation, proteome analyses of nodule and the proteins in apoplast upon communication between Legumes and Rhizobia were performed.