• Title/Summary/Keyword: QRS 검출

Search Result 75, Processing Time 0.033 seconds

Detection of ECG Characteristic Points for Heart Disease Diagnosis (심장질환 진단을 위한 ECG 신호에서의 특징점 검출)

  • 신승철;강재환;김승환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.199-201
    • /
    • 2002
  • 본 논문에서는 심장질환의 진단 알고리즘의 개발에 있어서 필수적으로 요구되는 심장질환별 ECG 데이터의 수집에 관하여 기술한다. 또한, 진단 알고리즘을 개발하기 위한 전단계로서 심전도 신호에서 각 특징들을 검출하는 알고리즘에 관하여 설명하고, 이를 MITDB와 수집한 ECG 신호에 적용한 결과를 보인다. QRS-complex의 검출은 99% 이상의 정확도를 보이나, P-wave와 T-wave의 검출에서는 아직까지 보완할 점이 많은 것으로 나타난다. 심장질환별 12-채널 ECG 데이터베이스의 구축은 보다 정확하고 현실적인 진단 알고리즘을 개발하는 데 크게 기여할 것으로 기대한다.

  • PDF

An u-healthcare system using an wireless sensor node with ECG analysis function by QRS-complex detection (QRS검출에 의한 ECG분석 기능을 갖춘 무선센서노드를 활용한 u-헬스케어 시스템)

  • Lee, Dae-Seok;Bhardwaj, Sachin;Chung, Wan-Young
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.361-368
    • /
    • 2007
  • Small size real-time ECG signal analysis function by QRS-complex detection was put into sensor nodes. Wireless sensor nodes attached on the patient’s body transmit ECG data continuously in normal u-healthcare system. So there are heavy communication traffics between sensor nodes and gateways. New developed platform for real-time analysis of ECG signals on sensor node can be used as an advanced diagnosis and alarming system for healthcare. Sensor node does not need to transmit ECG data all the time in wireless sensor network and to server PC via gateway. When sensor node detects suspicion or abnormality in ECG, then the ECG data in the network was transmitted to the server PC for further powerful analysis. This system can reduce data packet overload and save some power in wireless sensor network. It can also increase the server performance.

Low-Power ECG Detector and ADC for Implantable Cardiac Pacemakers (이식형 심장 박동 조율기를 위한 저전력 심전도 검출기와 아날로그-디지털 변환기)

  • Min, Young-Jae;Kim, Tae-Geun;Kim, Soo-Won
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.77-86
    • /
    • 2009
  • A wavelet Electrocardiogram(ECG) detector and its analog-to-digital converter(ADC) for low-power implantable cardiac pacemakers are presented in this paper. The proposed wavelet-based ECG detector consists of a wavelet decomposer with wavelet filter banks, a QRS complex detector of hypothesis testing with wavelet-demodulated ECG signals, and a noise detector with zero-crossing points. To achieve high-detection performance with low-power consumption, the multi-scaled product algorithm and soft-threshold algorithm are efficiently exploited. To further reduce the power dissipation, a low-power ADC, which is based on a Successive Approximation Register(SAR) architecture with an on/off-time controlled comparator and passive sample and hold, is also presented. Our algorithmic and architectural level approaches are implemented and fabricated in standard $0.35{\mu}m$ CMOS technology. The testchip shows a good detection accuracy of 99.32% and very low-power consumption of $19.02{\mu}W$ with 3-V supply voltage.

  • PDF

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection (심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출)

  • Cho, Ik-sung;Kwon, Hyeog-soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1542-1550
    • /
    • 2019
  • Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

Pattern Analysis of Personalized ECG Signal by Q, R, S Peak Variability (Q, R, S 피크 변화에 따른 개인별 ECG 신호의 패턴 분석)

  • Cho, Ik-Sung;Kwon, Hyeog-Soong;Kim, Joo-Man;Kim, Seon-Jong;Kim, Byoung-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.192-200
    • /
    • 2015
  • Several algorithms have been developed to classify arrhythmia which rely on specific ECG(Electrocardiogram) database. Nevertheless personalized difference of ECG signal exist, performance degradation occurs because of carrying out diagnosis by general classification rule. Most methods require accurate detection of P-QRS-T point, higher computational cost and larger processing time. But it is difficult to detect the P and T wave signal because of person's individual difference. Therefore it is necessary to classify the pattern by analyzing personalized ECG signal and extracting minimal feature. Thus, QRS pattern Analysis of personalized ECG Signal by Q, R, S peak variability is presented in this paper. For this purpose, we detected R wave through the preprocessing method and extract eight feature by amplitude and phase variability. Also, we classified nine pattern in realtime through peak and morphology variability. PVC, PAC, Normal, LBBB, RBBB, Paced beat arrhythmia is evaluated by using 43 record of MIT-BIH arrhythmia database. The achieved scores indicate the average of 93.72% in QRS pattern detection classification.

ECG Monitoring using High-Reliability Functional Wireless Sensor Node based on Ad-hoc network (고신뢰도 기능성 무선센서노드를 이용한 Ad-hoc기반의 ECG 모니터링)

  • Lee, Dae-Seok;Do, Kyeong-Hoon;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1215-1221
    • /
    • 2009
  • A novel approach for electrocardiogram (ECG) analysis within a functional sensor node has been developed and evaluated. The main aim is to reduce data collision, traffic overload and power consumption in healthcare applications of wireless sensor networks(WSN). The sensor node attached on the patient's body surface around the heart can perform ECG analysis based on a QRS detection algorithm to detect abnormal condition of the patient. Data transfer is activated only after detected abnormality in the ECG. This system can reduce packet loss during transmission by reducing traffic overload. In addition, it saves power supply energy leading to more reliable, cheap and user-friendly operation in the WSN for ubiquitous health monitoring.

Improvement of ECG P wave Detection Performance Using CIR(Contextusl Information Rule-base) Algorithm (Contextual information 을 이용한 P파 검출에 관한 연구)

  • 이지연;김익근
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.235-240
    • /
    • 1996
  • The automated ECG diagnostic systems that are odd in hospitals have low performance of P-wave detection when faced with some diseases such as conduction block. So, the purpose of this study was the improvement of detection performance in conduction block which is low in P-wave detection. The first procedure was removal of baseline drift by subtracting the median filtered signal of 0.4 second length from the original signal. Then the algorithm detected R peak and T end point and cancelled the QRS-T complex to get'p prototypes'. Next step was magnification of P prototypes with dispersion and detection of'p candidates'in the magnified signal, and then extraction of contextual information concerned with P-waves. For the last procedure, the CIR was applied to P candidates to confirm P-waves. The rule base consisted of three rules that discriminate and confirm P-waves. This algorithm was evaluated using 500 patient's raw data P-wave detection perFormance was in- creased 6.8% compared with the QRS-T complex cancellation method without application of the rule base.

  • PDF

Design of Fuzzy System for Decision of Arrhythmia using Wavelet Coefficients (웨이브렛 계수를 이용한 부정맥 판정용 퍼지시스템 설계)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.230-238
    • /
    • 2002
  • In this paper, we designed a fuzzy system using the wavelet coefficients to detection the PVCs effectively and to increase the accuracy of decision of the arrhythmia. In the proposed Fuzzy system, the QRS complex of ECG signal is divided into 6th level frequence bands by wavelet transform using Haar wavelet. The MIT/BIH database for the source of input signal is used in order to evaluate the performance of the proposed system. From the simulation results, the decision of membership functions for PVCs and heart rates by using Fuzzy rules, we detected the abnormal values effectively by application of leaned from neural network and we also found results in classification ratio of 95% the decision of arrhythmia.

Maximum dV/dt Detection Alaorithm for Photoplethysmography Waveform (광용적맥파 신호 최대 dV/dt 검출 알고리즘 개발)

  • Shin, Hangsik
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1395-1396
    • /
    • 2015
  • 본 연구의 목적은 광용적맥파 해석에 중요하게 사용되는 최대 상승기울기(maximum dV/dt) 지점 검출 알고리즘 개발로, 미분 및 필터링을 통한 전처리 과정, 극점 검출과정, 역탐색 등의 후처리 과정으로 구성되는 알고리즘을 구현하였다. 제안된 알고리즘의 성능을 평가하기 위하여 총 74,225개의 맥박파형을 사용한 검증을 수행하였으며, 동시에 측정된 심전도 QRS지점을 기준으로 최대 dV/dt 측정 위치 정확성을 판정하였다. 시뮬레이션 결과, 적응형 임계치 극점 검출 방법과 함께 사용하였을 때, 제안된 알고리즘은 기존 광용적맥파 상단, 하단극점 검출 알고리즘과 유사한 성능인 98.57%, 99.98%의 민감도와 특이도, 0.02%의 오검출율을 가지는 것으로 나타났다.

  • PDF

A QRS pattern analysis algorithm by improved significant point extraction method (개선된 특성점 검출 기법에 의한 QRS 패턴해석)

  • Hwang, Seon-Cheol;Lee, Byung-Chae;Nam, Seung-Woo;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1991 no.05
    • /
    • pp.51-55
    • /
    • 1991
  • This paper describes an algorithm of pattern analysis of ECG signals by significant points extraction method. The significant points can be extracted by modified zerocrossing method, which method determines the real significant point among the significant point candidates by zerocrossing method and slope rate of left side and right side. This modified zerocrossing method improves the accuracy of detection of real significant point position. This paper also describes the pattern matching algorithm by a hierarchical AND/OR graph of ECG signals. The decomposition of ECG signals by a hierarchical AND/OR graph can make the pattern matching process easy and fast. Furthermore the pattern matching to the significant points reduces the processing time of ECG analysis.

  • PDF