• Title/Summary/Keyword: QML

Search Result 6, Processing Time 0.019 seconds

Research Trends in Quantum Machine Learning (양자컴퓨팅 & 양자머신러닝 연구의 현재와 미래)

  • J.H. Bang
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.51-60
    • /
    • 2023
  • Quantum machine learning (QML) is an area of quantum computing that leverages its principles to develop machine learning algorithms and techniques. QML is aimed at combining traditional machine learning with the capabilities of quantum computing to devise approaches for problem solving and (big) data processing. Nevertheless, QML is in its early stage of the research and development. Thus, more theoretical studies are needed to understand whether a significant quantum speedup can be achieved compared with classical machine learning. If this is the case, the underlying physical principles may be explained. First, fundamental concepts and elements of QML should be established. We describe the inception and development of QML, highlighting essential quantum computing algorithms that are integral to QML. The advent of the noisy intermediate-scale quantum era and Google's demonstration of quantum supremacy are then addressed. Finally, we briefly discuss research prospects for QML.

An Efficient Quadratic Projection-Based Iris Recognition: Performance Improvements of Iris Recognition Using Dual QML (효율적인 Quadratic Projection 기반 홍채 인식: Dual QML을 적용한 홍채 인식의 성능 개선 방안)

  • Kwon, Taeyean;Noh, Geontae;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.85-93
    • /
    • 2018
  • Biometric user authentications, day after day, propagate more to human life instead of traditional systems which use passwords and ID cards. However, most of these systems have many problems for given biometric information such noisy data, low-quality data, a limitation of recognition rate, and so on. To deal with these problems, I used Dual QML which is non-linear classification for classifying correctly the real-world data and then proposed preprocessing method for increasing recognition rate and performance by segmenting a specific region on an image. The previous published Dual QML used face, palmprint, ear for the experiment. In this paper, I used iris for experiment and then proved excellence of Dual QML at iris recognition. Finally I demonstrated these results (e.g. increasing recognition rate and performance, suitability for iris recognition) through experiments.

Quantum Machine Learning: A Scientometric Assessment of Global Publications during 1999-2020

  • Dhawan, S.M.;Gupta, B.M.;Mamdapur, Ghouse Modin N.
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.11 no.3
    • /
    • pp.29-44
    • /
    • 2021
  • The study provides a quantitative and qualitative description of global research in the domain of quantum machine learning (QML) as a way to understand the status of global research in the subject at the global, national, institutional, and individual author level. The data for the study was sourced from the Scopus database for the period 1999-2020. The study analyzed global research output (1374 publications) and global citations (22434 citations) to measure research productivity and performance on metrics. In addition, the study carried out bibliometric mapping of the literature to visually represent network relationship between key countries, institutions, authors, and significant keyword in QML research. The study finds that the USA and China lead the world ranking in QML research, accounting for 32.46% and 22.56% share respectively in the global output. The top 25 global organizations and authors lead with 35.52% and 16.59% global share respectively. The study also tracks key research areas, key global players, most significant keywords, and most productive source journals. The study observes that QML research is gradually emerging as an interdisciplinary area of research in computer science, but the body of its literature that has appeared so far is very small and insignificant even though 22 years have passed since the appearance of its first publication. Certainly, QML as a research subject at present is at a nascent stage of its development.

Asymptotic Normality for Threshold-Asymmetric GARCH Processes of Non-Stationary Cases

  • Park, J.A.;Hwang, S.Y.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.477-483
    • /
    • 2011
  • This article is concerned with a class of threshold-asymmetric GARCH models both for stationary case and for non-stationary case. We investigate large sample properties of estimators from QML(quasi-maximum likelihood) and QL(quasilikelihood) methods. Asymptotic distributions are derived and it is interesting to note for non-stationary case that both QML and QL give asymptotic normal distributions.

Influence of Carrier Trap in InAs/GaAs Quantum-Dot Solar Cells (InAs/GaAs 양자점 태양전지에서 전하트랩의 영향)

  • Han, Im Sik;Kim, Jong Su;Park, Dong Woo;Kim, Jin Soo;Noh, Sam Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In order to investigate an influence of carrier trap by quantum dots (QDs) on the solar parameters, in this study, the $p^+-QD-n/n^+$ solar cells with InAs/GaAs QD active layers are fabricated, and their characteristics are investigated and compared with those of a GaAs matrix solar cell (MSC). Two different types of QD structures, the Stranski-Krastanow (SK) QD and the quasi-monolayer (QML) QD, have been introduced for the QD solar cells, and the parameters (open-circuit voltage ($V_{OC}$), short-cirucuit current ($I_{SC}$), fill factor (FF), conversion efficiency (CE)) are determined from the current-voltage characteristic curves under a standard solar illumination (AM1.5). In SK-QSC, while FF of 80.0% is similar to that of MSC (80.3%), $V_{OC}$ and $J_{SC}$ are reduced by 0.03 V and $2.6mA/cm^2$, respectively. CE is lowered by 2.6% as results of reduced $V_{OC}$ and $J_{SC}$, which is due to a carrier trap into QDs. Though another alternative structure of QML-QD to be expected to relieve the carrier trap have been firstly tried for QSC in this study, it shows negative results contrary to our expectations.

A Study on the Improvement of Quality Management System to Improve Weapon System Performance (무기체계 성능보장을 위한 품질관리 제도개선 연구)

  • Bong, Ju-Sung;Baek, Il-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.35-46
    • /
    • 2021
  • The purpose of this study is to establish effective quality control activities to maintain proper operation rates and improve the performance of research and development weapon systems. Quality control improvement measures suitable for the actual conditions of our military were identified by comparing the operational methods and advantages/disadvantages of the domestic quality control systems Defense Quality Management System and Defense Quality mark with those of the systems employed in the US(QPL and QML). In order to ensure the reliability of the weapon system, it is imperative to operate a design-oriented self-quality management system through manufacturing-oriented government-led inspection and to expand and reorganize the certification system divided into manufacturing items and companies.