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Abstract
This article is concerned with a class of threshold-asymmetric GARCH models both for stationary case

and for non-stationary case. We investigate large sample properties of estimators from QML(quasi-maximum
likelihood) and QL(quasilikelihood) methods. Asymptotic distributions are derived and it is interesting to note
for non-stationary case that both QML and QL give asymptotic normal distributions.
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1. Introduction

Since the seminal paper of Engle (1982) and Bollerslev (1986), GARCH-type models have been suc-
cessfully used in econometrics and finance field. Asymptotic theory of the quasi-maximum likelihood
estimator(QMLE) in GARCH context were first established by Weiss (1986) for ARCH model, and
followed by Lumsdaine (1996) for GARCH(1, 1) processes. Further studies for general GARCH(p, q)
models can be found in Berkes et al. (2003), Straumann and Mikosch (2006) and Lee and Lee (2009).
We refer to Straumann (2005) for a recent comprehensive treatment on the estimation of GARCH
models in a broader context. An estimator obtained from solving the quasi-likelihood score equation
is referred to as the quasi-likelihood estimator(QLE). See, for instance, Hwang and Basawa (2011a).
In the context of stationary GARCH processes, it is well documented that both QMLE and QLE are
asymptotically normally distributed.

This short article is concerned with the non-stationary case. It is usual in stochastic processes that
limiting distributions from non-stationary case are no longer normal distributions. As an illustration,
in the simple AR(1) model, non-stationary distribution for the unit root case is given by a functional of
Brownian motion and non-stationary explosive AR(1) model produces a non-normal limiting distribu-
tion which is a product of two independent random variables (cf. Fuller, 1996, Ch. 10). Interestingly
enough, however, in the GARCH context, Jensen and Rahbek (2004a, 2004b) obtained normal limits
of the QMLE for the non-stationary GARCH processes. Also, Hwang and Basawa (2005) established
asymptotic normal distribution of the least squares estimation for the explosive non-stationary random
coefficient AR(1) process which is closely related to ARCH models. The main contribution of this pa-
per is to establish normal limits of the QMLE and QLE from a general class of threshold-asymmetric
GARCH models for the non-stationary case. Section 2 describes the class of models and related
QMLE and QLE are introduced. Non-stationary asymptotic distributions are obtained in Section 3 in
terms of normal limits.
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2. Threshold-Asymmetric GARCH Processes: Stationary Case

Following Pan et al. (2008), consider a time series {ϵt} generated by a general class of threshold
asymmetric GARCH processes(TAGARCH, for short) defined by

ϵt =
√

htet,

hδt −
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j=1

β jhδt− j = α0 +

p∑
i=1
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αi1

(
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)2δ
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]
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It will be assumed that

(A1) The innovation {et} is non-degenerate and symmetrically distributed.

(A2) For some ∆ > 0, E|et |∆ < ∞ and P{e2
t ≥ t}t−µ goes to zero as t tends to infinity for some µ > 0.

(A3) The parameter space Θ is compact subset of Rd, d = 2p + q + 2 and ϕ0 is an interior point of Θ,
and the Lyapunov exponent γ(ϕ) < 0 for all ϕ ∈ Θ (cf. Pan et al., 2008).

Rewrite (2.1) in a compact form of the vector equation with random coefficient as

Xt = AtXt−1 + B, (2.3)

where with κ = 2p + q − 2,

Xt =

(
hδt+1, . . . , h

δ
t−q+2,

(
ϵ+t

)2δ
,
(
ϵ−t

)2δ
, . . . ,

(
ϵ+t−p+2

)2δ
,
(
ϵ−t−p+2

)2δ
)′
∈ Rκ, (2.4)

B ≡ B(ϕ) = (α0, 0, . . . , 0)
′ ∈ Rκ and κ × κ matrix At is defined by

At ≡ At(ϕ) =


τ′t βq α′ αp1 αp2

Iq−1 0 0 0 0
ξ′1t 0 0 0 0
ξ′2t 0 0 0 0
0 0 I2(p−2) 0 0

 , (2.5)

with τt = (β1 + α11(e+t )2δ + α12(e−t )2δ, β2, . . . , βq−1)
′ ∈ Rq−1, I denoting the identity matrix ξ+t =

(e+2δ
t , 0, . . . , 0)

′ ∈ Rq−1 and ξ−t = (e−2δ
t , 0, . . . , 0)

′ ∈ Rq−1.
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Due to Theorem 5 of Pan et al. (2008), the model (2.3) and hence the TAGARCH model in (2.1)
has a unique strictly stationary solution under assumptions (A1) and (A2) if and only if

γ(ϕ) < 0, (2.6)

where γ(ϕ) is the top Lyapunov exponent of the sequence At, i.e.,

γ(ϕ) = lim
t→+∞

1
t
∥A0A−1 · · · A−t∥, (2.7)

where ∥ · ∥ denotes a norm on Rκ. Consequently, in what follows, TAGARCH model can be referred
to as stationary and non-stationary process according respectively to γ(ϕ) < 0 and γ(ϕ) ≥ 0.

Under conditions (A1)–(A3), ht = ht(ϕ) may be expressed in terms of observation process {ϵt} as
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2.1. Quasi-maximum likelihood estimation

The QMLE (which will be denoted by ϕML) based on the sample ϵ1, . . . , ϵn is defined by the value
maximizing the presumed normal likelihood, viz.,

ϕML = argmaxϕ∈ΘLn(ϕ),

where

Ln(ϕ) =
n∑

t=1

−1
2

{
log ht(ϕ) +

ϵ2
t

ht(ϕ)

}
=

n∑
t=1

lt(ϕ). (2.9)

Define

Λ(ϕ) = E
{
∂lt(ϕ)
∂ϕ∂ϕ′

}
and Ω(ϕ) = E

{
∂lt(ϕ)
∂ϕ

∂lt(ϕ)
∂ϕ′

}
.

For the stationary case, one can obtain the consistency and asymptotic normality of ϕML after com-
bining Lemmas 4 and 5 of Pan et al. (2008) and central limit theorem for martingales. Details are
omitted.

Proposition 1. Under (A1)–(A3) plus Ee4
t < ∞, we have

(i) ϕML
a.s.−→ ϕ0,

(ii)
√

n
(
ϕML − ϕ0

) d−→ N
(
0,Λ−1

0 Ω0Λ
−1
0

)
, where Λ0 = Λ(ϕ0) and Ω0 = Ω(ϕ0).
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2.2. Quasilikelihood estimation

Using the notation Et−1, for the conditional expectation given Ft−1, σ-field generated ϵt−1, ϵt−2, . . .,
viz., Et−1(·) = E( · |Ft−1), consider a sequence of martingale differences {gt(ϕ)} with respect to the
increasing σ-field {Ft}. Note that Et−1gt(ϕ) = 0 and it is assumed that Et−1[∂gt(ϕ)/∂ϕ] , 0 and
Et−1[g2

t (θ)] < ∞. The quasilikelihood estimator (ϕQL) is obtained by solving Un(ϕ) = 0 where Un(ϕ)
denotes a quasilikelihood score function which is defined by

Un(ϕ) =
n∑

t=1

gt(θ)
Et−1

[
∂gt(ϕ)/∂ϕ

]
Et−1

[
g2

t (ϕ)
] . (2.10)

See Hwang and Basawa (2011a). When we take gt(ϕ) = ϵ2
t − ht(ϕ), we readily have

Et−1

[
g2

t (ϕ)
]
= Et−1ϵ

4
t − h2

t (ϕ) and Et−1

[
∂gt(ϕ)
∂(ϕ)

]
= −∂ht(ϕ)

∂ϕ

and therefore we have a quasilikelihood score function defined by

Un(ϕ) = −
n∑

t=1

∂ht−1(ϕ)
∂ϕ

[
Et−1ϵ

4
t − h2

t (ϕ)
]−1 (

ϵ2
t − ht(ϕ)

)
. (2.11)

For the stationary case, ϕQL obtained from solving Un(ϕ) = 0 in (2.11) is seen to be asymptotically
normal. Refer to Heyde (1997).

Proposition 2. Under the same conditions as in Proposition 1, we have

√
n
(
ϕQL − ϕ0

) d−→ N
(
0, J

(
ϕ0)−1

)
,

where J(ϕ0) = plim n−1Var(Un(ϕ)) with Var(·) being evaluated at ϕ = ϕ0.

3. Non-Stationary Case

It is often the case in practice to assume that the ARCH/GARCH process is ergodic stationary so
appropriate laws of large numbers apply (Jensen and Rahbek, 2004a). Recently Jensen and Rahbek
(2004a) have showed that QMLE of the ARCH parameter is asymptotically normal with the same rate
of convergence

√
n even for the non-stationary explosive case. In a subsequent paper of Jensen and

Rahbek (2004b), they obtained a similar result for an estimator for GARCH(1, 1) processes. Although,
in their papers, estimators are restricted QMLE for which the true intercept coefficient α0 is assumed
to be known, Jensen and Rahbek (2004a, 2004b) were the first to consider the asymptotic theory of the
QMLE for non-stationary ARCH/GARCH models. See also Linton et al. (2010). In order to discuss
non-stationary case, we shall confine ourselves to the first order TAGARCH(1, 1) process. A simple
TAGARCH(1, 1) process is given by ϵt =

√
htet and

ht(θ) = α0 + α11

(
ϵ+t−1

)2
+ α12

(
ϵ−t−1

)2
+ β1ht−1(θ), t = 1, . . . , n, (3.1)

where θ = (α11, α12, β1, α0) : 4 × 1.
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3.1. Non-stationary QMLE

For a non-stationarity, we assume γ(ϕ) ≥ 0 (see Equation (2.7)), equivalently, assume that true pa-
rameters satisfy (C1) given by

(C1) E log
[
α0

11(e+t )2 + α0
12(e−t )2 + β0

1

]
≥ 0. (3.2)

It is noted that the parameter vector θ of the TAGARCH(1, 1) model is denoted by θ = (α11, α12, β1, α0)
rather than ϕ, with α11, α12, β1 and α0 being all positive. Denote the true parameter values by
θ0 = (α0

11, α
0
12, β

0
1, α

0
0). Adapting Jensen and Rahbek (2004a, 2004b) techniques originally used for

standard (and symmetric) GARCH(1, 1) to our (asymmetric) TAGARCH(1,1) model, one can obtain
(cf. Lemma 1 and Theorem 1 of Jensen and Rahbek (2004b)) asymptotic normality of the non-
stationary QMLE. Assume that α0 is known, a priori, as in Jensen and Rahbek (2004b). The QMLE
of (α11, α12, β1) is denoted loosely by θML.

Theorem 1. Assume that the true likelihood is indeed normal. Then, under (C1) of a non-stationarity,
the QMLE (and hence the exact maximum likelihood estimator) θML is consistent and asymptotically
normal, viz.,

√
n
[
θML −

(
α0

11, α
0
12, β

0
1

)] d−→ N(0,Ω).

Here Ω is given by

Ω = plim n−1
(

∂2ln(θ0)
∂(α11, α12, β1)∂(α11, α12, β1)′

)
.

Remark 1. It is interesting to note that convergence rate of the QMLE is still given by the square
root of the sample size even for the non-stationary case.

3.2. Non-stationary QLE

To discuss the quasilikelhood estimator θQL, consider the following quasilikelihood estimating func-
tion Un(θ) defined in (2.11) with θ replacing ϕ

Un(θ) =
n∑

t=1

ut(θ) : 4 × 1 vector, (3.3)

where {ut(θ)} is a sequence of martingale differences defined by

ut(θ) = −
∂ht−1(θ)
∂θ

[
Et−1ϵ

4
t − h2

t (θ)
]−1 (

ϵ2
t − ht(θ)

)
.

Denote by ξn(θ) the sum of conditional covariance matrices corresponding to ut(θ), viz.,

ξn(θ) =
n∑

t=1

Var(ut(θ)|Ft−1) =
n∑

t=1

E
(
ut(θ)uT

t (θ)
∣∣∣Ft−1

)
: 4 × 4 matrix. (3.4)

Notice that the vector Un(θ) constitutes a (4× 1)-dimensional martingale. It will be assumed through-
out that a law of large numbers is valid for the martingale Un(θ);
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(C2) There exists a nonsingular (non-random) matrix ∆ such that

∆ = plim
[
−ξ−

1
2

n

(
∂Un(θ)
∂θ

)
ξ
− 1

2
n

]
. (3.5)

(C2) can be verified using an appropriate law of large numbers. We refer to Hall and Heyde (1980)
for central limit theorems and laws of large numbers for martingales.

Using random norm ξ1/2
n (θ) instead of

√
n, we obtain asymptotic normality of θQL as a solution of the

equation Un(θ) = 0. Here, the half matrix ξ1/2
n is defined by the symmetric matrix obtained from the

spectral decomposition of ξn(θ).

Theorem 2. Assume that Ee4
t < ∞. Then under (C1) and (C2), we have

ξ
1
2
n

(
θ0

) (
θQL − θ0

) d−→ N
(
0,∆−1∆−T

)
,

where ∆ is defined in (C2) and ∆−T denotes the inverse of ∆−1.

Proof: Recently, Hwang and Basawa (2011b) discussed asymptotic distributions of martingale esti-
mating equations and thus we adapt the main arguments as in Hwang and Basawa (2011b). It follows
from (C2) and a Taylor’s expansion of Un(θ) at θQL that

ξ
1
2
n

(
θQL − θ0

)
= ∆−1ξ

− 1
2

n Un

(
θ0

)
+ op(1). (3.6)

Using the Cramer-Wold device, for given non-zero constant vector a of size (4 × 1), consider

aT ξ
− 1

2
n Un

(
θ0

)
=

n∑
t=1

[
aT ξ

− 1
2

n ut

(
θ0

)]
for which the term inside square bracket is seen to be a sequence of martingale array differences for
each fixed n. Thus by using the central limit theorem for martingale arrays with random norms (cf.,
Theorem 3.2 of Hall and Heyde (1980)), we conclude

ξ
− 1

2
n Un

(
θ0

) d−→ N (0, Ik)

which in turn implies the theorem via (3.6). �
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