Oh, Se An;Kim, Min Jeong;Kang, Ji Su;Hwang, Hyeon Seok;Kim, Young Jin;Kim, Seong Hoon;Park, Jae Won;Yea, Ji Woon;Kim, Sung Kyu
Progress in Medical Physics
/
v.28
no.3
/
pp.106-110
/
2017
The variable density phantom fabricated with varying the infill values of 3D printer to provide more accurate dose verification of radiation treatments. A total of 20 samples of rectangular shape were fabricated by using the $Finebot^{TM}$ (AnyWorks; Korea) Z420 model ($width{\times}length{\times}height=50mm{\times}50mm{\times}10mm$) varying the infill value from 5% to 100%. The samples were scanned with 1-mm thickness using a Philips Big Bore Brilliance CT Scanner (Philips Medical, Eindhoven, Netherlands). The average Hounsfield Unit (HU) measured by the region of interest (ROI) on the transversal CT images. The average HU and the infill values of the 3D printer measured through the 2D area profile measurement method exhibited a strong linear relationship (adjusted R-square=0.99563) in which the average HU changed from -926.8 to 36.7, while the infill values varied from 5% to 100%. This study showed the feasibility fabricating variable density phantoms using the 3D printer with FDM (Fused Deposition Modeling)-type and PLA (Poly Lactic Acid) materials.
This study was designed to measure transit dose with an electronic portal imaging device (EPID) in eight patients treated with intensity modulated radiotherapy (IMRT), and to verify the accuracy of dose delivery to patients. The calculated dose map of the treatment planning system (TPS) was compared with the EPID based dose measured on the same plane with a gamma index method. The plan for each patient was verified prior to treatment with a diode array (MapCHECK) and portal dose image prediction (PDIP). To simulate possible patient positioning errors during treatment, outcomes were evaluated after an anthropomorphic phantom was displaced 5 and 10 mm in various directions. Based on 3%/3 mm criteria, the $mean{\pm}SD$ passing rates of MapCHECK, PDIP (pre-treatment QA) for 47 IMRT were $99.8{\pm}0.1%$, $99.0{\pm}0.7%$, and, respectively. Besides, passing rates using transit dosimetry was $90.0{\pm}1.5%$ for the same condition. Setup errors of 5 and 10 mm reduced the mean passing rates by 1.3% and 3.0% (inferior to superior), 2.2% and 4.3% (superior to inferior), 5.9% and 10.9% (left to right), and 8.9% and 16.3% (right to left), respectively. These findings suggest that the transit dose-based IMRT verification method using EPID, in which the transit dose from patients is compared with the dose map calculated from the TPS, may be useful in verifying various errors including setup and/or patient positioning error, inhomogeneity and target motions.
Proceedings of the Korean Society of Medical Physics Conference
/
2002.09a
/
pp.68-73
/
2002
In standard teletherapy, a treatment plan is generated with the aid of a treatment planning system, but it is common to perform an independent monitor unit verification calculation (MUVC). In exact analogy, we propose and demonstrate that a simple and accurate MUVC in Intensity Modulated Radiotherapy (IMRT) is possible. We introduce a concept of Modified Clarkson Integration (MCI). In MCI, we exploit the rotational symmetry of scattering to simplify the dose calculation. For dose calculation along a central axis (CAX), we first replace the incident IMRT fluence by an azimuthally averaged fluence. Second, the Clarkson Integration is carried over annular sectors instead of over pie sectors. We wrote a computer code, implementing the MCI technique, in order to perform a MUVC for IMRT purposes. We applied the code to IMRT plans generated by CORVUS. The input to the code consists of CORVUS plan data (e.g., DMLC files, jaw settings, MU for each IMRT field, depth to isocenter for each IMRT field), and the output is dose contribution by individual IMRT field to the isocenter. The code uses measured beam data for Sc, Sp, TPR, (D/Mu)$\_$ref/ and includes effects from MLC transmission, and radiation field offset. On a 266 MHZ desktop computer, the code takes less than 15 sec to calculate a dose. The doses calculated with MCI algorithm agreed within +/- 3% with the doses calculated by CORVUS, which uses a 1cm x 1cm pencil beam in dose calculation. In the present version of MCI, skin contour variations and inhomogeneities were neglected.
High dose rate (HDR) brachytherapy for treating a cervix carcinoma has become popular, because it eliminates many of the problems associated with conventional brachytherapy. In order to improve the clinical effectiveness with HDR brachytherapy, a dose calculation algorithm, optimization procedures, and image registrations need to be verified by comparing the dose distributions from a planning computer and those from a phantom. In this study, the phantom was fabricated in order to verify the absolute doses and the relative dose distributions. The measured doses from the phantom were then compared with the treatment planning system for the dose verification. The phantom needs to be designed such that the dose distributions can be quantitatively evaluated by utilizing the dosimeters with a high spatial resolution. Therefore, the small size of the thermoluminescent dosimeter (TLD) chips with a dimension of <1/8"and film dosimetry with a spatial resolution of <1mm used to measure the radiation dosages in the phantom. The phantom called a pelvic phantom was made from water and the tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators were inserted into the grooves of the applicator holder. The dose distributions around the applicators, such as Point A and B, were measured by placing a series of TLD chips (TLD-to-TLD distance: 5mm) in the three TLD holders, and placing three verification films in the orthogonal planes. This study used a Nucletron Plato treatment planning system and a Microselectron Ir-192 source unit. The results showed good agreement between the treatment plan and measurement. The comparisons of the absolute dose showed agreement within $\pm$4.0 % of the dose at point A and B, and the bladder and rectum point. In addition, the relative dose distributions by film dosimetry and those calculated by the planning computer show good agreement. This pelvic phantom could be a useful to verify the dose calculation algorithm and the accuracy of the image localization algorithm in the high dose rate (HDR) planning computer. The dose verification with film dosimetry and TLD as quality assurance (QA) tools are currently being undertaken in the Catholic University, Seoul, Korea.
A method to get a size of the radiation isocenter of linear accelerators using star-shot images was presented and a computer program was developed to automate the method. Accuracy of the method was verified. The developed program was used to measure sizes of the radiation isocenters for a Clinac 21EX (Varian, USA) using data of quality assurance (QA) performed from June 2008 to December 2010. To calculated the size of radiation isocenter, positions of two points on each central ray of the star-shot image were found and the equation of the central ray was determined using the positions of two points. Using the equations of central rays the radius of the minimum circle intersecting all the central rays, which is one half of the size of radiation isocenter, was calculated. The program measured x-intercepts and y-intercepts of the central rays within errors of 0.084 mm and sizes of radiation isocenters within 0.053 mm. All the errors were less than the spatial resolution of star-shot images 0.085 mm. The radiation isocenter sizes of Clinac 21EX were $0.33{\pm}0.27mm$, $0.71{\pm}0.36mm$, $0.50{\pm}0.16mm$ for collimator, gantry and couch respectively. During the measurement period all the measured sizes were less than 2.0 mm and within tolerance. The developed program could calculate the size of radiation isocenters and it would be helpful to routine QA.
Purpose :To design and test test CT simulator phantom for geometrical test. Materials and Methods : The PMMA phantom was designed as a cylinder which is 20 cm in diameter and 24 cm in length, along with a 25$\times25\times31cm^{3}$ rectangular parallelepiped. Radio-opaque wires of which diameter is 0.8 mm are attached on the other surface of the phantom as a spiral. The rectangular phantom was made of four 24$\times24\times0.5 cm^{3}$ square plates and each plate had a 24$\times24 cm^{2}$, 12$\times12cm^{2}$, 6$\times6 cm$^{2}$ square line. The squares were placed to face the cylinder at angles 0 $^{\circ}$ , 15 $^{\circ}$ , 30 $^{\circ}$ ,respectively. The rectangular phantom made it possible to measure the field size, couch angle, the collimator angle, the isocenter shift and the SSD, the measurements of the gantry angle from the cylindrical part. A virtual simulation software, AcOSim, offered various conditions to perform virtual simulations and these results were used to perform the geometrical Quality assurance of CT simulator. Results : A 0.3$\~$0.5 mm difference was found on the 24 cm field size which was created with the DRR measurements obtained by scanning of the rectangular phantom. The isocenter shift, the collimator rotation, the couch rotation, and the gantry rotation test showed 0.5$\~$1 mm, 0.5$\~$l$^{\circ}$ 0.5$\~$ 1$^{\circ}$ , and 0.5-1 $^{\circ}$ differences, respectively. We could not find any significant differences between the results from the two scanning methods. Conclusion :The geometrical test phantom developed in the study showed less than 1 mm (or 1 $^{\circ}$ ) differences. The phantom could be used as a routine geometrical QC/QA tools, since the differences are within clinically acceptable ranges.
The Journal of Korean Society for Radiation Therapy
/
v.17
no.1
/
pp.41-43
/
2005
Purpose : Wish to present degree management process that is efficient confirm radiation treatment exclusive use CT simulator's Q.A item that become Q.A and Differentiation of diagnosis area that present Report of the AAPM Task Group No.66 using Q.A tool that produce itself and secure safe and correct CT-simulation process and equip convenience. Method and material : Manufacture CT simulator's Q.A tool on source and confirm virtue between isocenter of wall laser system, patient table, CT scanner's imaging plane that present in Report of the AAPM Task Group No.66 by daily publication unit. Result : Confirmed measured value from Report of the AAPM Task Group No.66 to confirmation of presenting degree management item in wall laser's ${\pm}2mm$, table's ${\pm}2mm$, imaging plane's ${\pm}2mm$ tolerance extent. Conclusion : There is unconfirmed item from CT-simulation process for therapy to CT Q.A protocol of existent diagnosis area, premising suitable degree management of radiation treatment exclusive use CT-simulator equipment confirming presenting Q.A item in Report of the AAPM Task Group No.66 safe and correct CT-simulation process guarantee can
Yoon, Mee Sun;Kim, Yong-Hyeob;Jeong, Jae-Uk;Nam, Taek-Keun;Ahn, Sung-Ja;Chung, Wong-Ki;Song, Ju-Young
Progress in Medical Physics
/
v.23
no.4
/
pp.219-228
/
2012
The tangential breast intensity modulated radiotherapy (T-B IMRT) technique, which uses the same tangential fields as conventional 3-dimensional conformal radiotherapy (3D-CRT) plans with physical wedges, was analyzed in terms of the calculated dose distribution feature and dosimetric accuracy of beam delivery during treatment. T-B IMRT plans were prepared for 15 patients with breast cancer who were already treated with conventional 3D-CRT. The homogeneity of the dose distribution to the target volume was improved, and the dose delivered to the normal tissues and critical organs was reduced compared with that in 3D-CRT plans. Quality assurance (QA) plans with the appropriate phantoms were used to analyze the dosimetric accuracy of T-B IMRT. An ionization chamber placed at the hole of an acrylic cylindrical phantom was used for the point dose measurement, and the mean error from the calculated dose was $0.7{\pm}1.4%$. The accuracy of the dose distribution was verified with a 2D diode detector array, and the mean pass rate calculated from the gamma evaluation was $97.3{\pm}2.9%$. We confirmed the advantages of a T-B IMRT in the dose distribution and verified the dosimetric accuracy from the QA performance which should still be regarded as an important process even in the simple technique as T-B IMRT in order to maintain a good quality.
Yoon-Ha Kim;Hyo-Jin Kim;Yeong-Rok Kang;Dong-Yeon Lee
Journal of the Korean Society of Radiology
/
v.18
no.3
/
pp.239-248
/
2024
Radiation therapy uses high energy, which can have side effects on the human body. Therefore, it is important to ensure that the appropriate dose is set for irradiation and to have confidence in the radiation produced by the generator. The EPR/Alanine dosimetry system is characterized by water equivalence, dose response linearity, and low fading, which makes it useful for quality control of radiation therapy equipment. In this study, we compared the signal and dose response curves of EPR/Alanine dosimetry by mass of alanine using 6 MV energy of a LINAC. An alanine dosimeter and EPR spectrometer from Burker, and a LINAC from Elekta, were used. A dose response curve and a 1st order regression equation were constructed from the irradiated dose and the EPR signal from the alanine dosimeter. We compared the signal magnitude and dose response curve with mass and checked the confidence through the measurement uncertainty of the dose response curve. As a result, it was found that the magnitude of the EPR signal increased by about 1.3 times at 64.5 mg, and the sensitivity of the dose response curve increased as the mass increased. The measurement uncertainty was evaluated to be between 5.84 % and 8.93 %. Through this study, it is expected that the EPR/alanine dosimetry system can be applied to the quality assurance and quality control of a LINAC.
Park, Su Yeon;Chae, Moon Ki;Lim, Jun Teak;Kwon, Dong Yeol;Kim, Hak Joon;Chung, Eun Ah;Kim, Jong Sik
The Journal of Korean Society for Radiation Therapy
/
v.32
/
pp.93-109
/
2020
Purpose: The radiochromic film (Gafchromic EBT3, Ashland Advanced Materials, USA) and 3-dimensional analysis system dosimetry checkTM (DC, MathResolutions, USA) were evaluated for patient-specific quality assurance (QA) of helical tomotherapy. Materials and Methods: Depending on the tumors' positions, three types of targets, which are the abdominal tumor (130.6㎤), retroperitoneal tumor (849.0㎤), and the whole abdominal metastasis tumor (3131.0㎤) applied to the humanoid phantom (Anderson Rando Phantom, USA). We established a total of 12 comparative treatment plans by the four geometric conditions of the beam irradiation, which are the different field widths (FW) of 2.5-cm, 5.0-cm, and pitches of 0.287, 0.43. Ionization measurements (1D) with EBT3 by inserting the cheese phantom (2D) were compared to DC measurements of the 3D dose reconstruction on CT images from beam fluence log information. For the clinical feasibility evaluation of the DC, dose reconstruction has been performed using the same cheese phantom with the EBT3 method. Recalculated dose distributions revealed the dose error information during the actual irradiation on the same CT images quantitatively compared to the treatment plan. The Thread effect, which might appear in the Helical Tomotherapy, was analyzed by ripple amplitude (%). We also performed gamma index analysis (DD: 3mm/ DTA: 3%, pass threshold limit: 95%) for pattern check of the dose distribution. Results: Ripple amplitude measurement resulted in the highest average of 23.1% in the peritoneum tumor. In the radiochromic film analysis, the absolute dose was on average 0.9±0.4%, and gamma index analysis was on average 96.4±2.2% (Passing rate: >95%), which could be limited to the large target sizes such as the whole abdominal metastasis tumor. In the DC analysis with the humanoid phantom for FW of 5.0-cm, the three regions' average was 91.8±6.4% in the 2D and 3D plan. The three planes (axial, coronal, and sagittal) and dose profile could be analyzed with the entire peritoneum tumor and the whole abdominal metastasis target, with planned dose distributions. The dose errors based on the dose-volume histogram in the DC evaluations increased depending on FW and pitch. Conclusion: The DC method could implement a dose error analysis on the 3D patient image data by the measured beam fluence log information only without any dosimetry tools for patient-specific quality assurance. Also, there may be no limit to apply for the tumor location and size; therefore, the DC could be useful in patient-specific QAl during the treatment of Helical Tomotherapy of large and irregular tumors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.