Analysis on the Dosimetric Characteristics of Tangential Breast Intensity Modulated Radiotherapy

유방암의 접선 세기조절 방사선치료 선량 특성 분석

  • Yoon, Mee Sun (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Kim, Yong-Hyeob (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Jeong, Jae-Uk (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Nam, Taek-Keun (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Ahn, Sung-Ja (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Chung, Wong-Ki (Department of Radiation Oncology, Chonnam National University Medical School) ;
  • Song, Ju-Young (Department of Radiation Oncology, Chonnam National University Medical School)
  • 윤미선 (전남대학교 의과대학 방사선종양학교실) ;
  • 김용협 (전남대학교 의과대학 방사선종양학교실) ;
  • 정재욱 (전남대학교 의과대학 방사선종양학교실) ;
  • 남택근 (전남대학교 의과대학 방사선종양학교실) ;
  • 안성자 (전남대학교 의과대학 방사선종양학교실) ;
  • 정웅기 (전남대학교 의과대학 방사선종양학교실) ;
  • 송주영 (전남대학교 의과대학 방사선종양학교실)
  • Received : 2012.08.24
  • Accepted : 2012.11.05
  • Published : 2012.12.31

Abstract

The tangential breast intensity modulated radiotherapy (T-B IMRT) technique, which uses the same tangential fields as conventional 3-dimensional conformal radiotherapy (3D-CRT) plans with physical wedges, was analyzed in terms of the calculated dose distribution feature and dosimetric accuracy of beam delivery during treatment. T-B IMRT plans were prepared for 15 patients with breast cancer who were already treated with conventional 3D-CRT. The homogeneity of the dose distribution to the target volume was improved, and the dose delivered to the normal tissues and critical organs was reduced compared with that in 3D-CRT plans. Quality assurance (QA) plans with the appropriate phantoms were used to analyze the dosimetric accuracy of T-B IMRT. An ionization chamber placed at the hole of an acrylic cylindrical phantom was used for the point dose measurement, and the mean error from the calculated dose was $0.7{\pm}1.4%$. The accuracy of the dose distribution was verified with a 2D diode detector array, and the mean pass rate calculated from the gamma evaluation was $97.3{\pm}2.9%$. We confirmed the advantages of a T-B IMRT in the dose distribution and verified the dosimetric accuracy from the QA performance which should still be regarded as an important process even in the simple technique as T-B IMRT in order to maintain a good quality.

기존의 쐐기(wedge) 필터를 사용하는 접선조사(tangential irradiation) 방식의 일반적인 유방암 방사선치료와 동일한 접선 조사야(filed)를 사용하면서 쐐기 필터를 삽입하는 대신 다엽콜리메터의 움직임을 통해 치료부위의 선량분포를 균일하게 형성토록 하는 접선 세기조절 방사선치료(tangential breast Intensity modulated radiotherapy, T-B IMRT)가 유방암치료에 적용되고 있다. 본 연구에서는 T-B IMRT치료계획에서 계산된 선량분포를 기존의 쐐기 필터를 사용한 일반적인 접선조사 방식의 치료계획과 비교하여 치료표적 및 중요장기에서의 선량분포 측면에서 T-B IMRT의 타당성을 살펴보고, 실제 T-B IMRT치료 빔 조사 시 선량 측정 및 치료계획 결과와의 오차 분석을 통해 선량 분포의 정확도를 확인하고자 하였다. 기존의 쐐기필터를 이용한 접선조사 방식으로 치료한 유방암 환자 15명을 대상으로 T-B IMRT치료계획을 세운 후, 계산된 선량분포를 비교, 분석하였다. T-B IMRT치료계획에서 치료표적 부피 내 선량분포의 균일도가 기존의 쐐기를 사용한 접선조사 방식보다 향상된 결과를 보였으며, 주변의 정상조직과 중요장기의 선량을 상대적으로 줄일 수 있음을 확인할 수 있었다. T-B IMRT의 실제 치료조사 시 선량정확도를 분석하기 위해 적합한 팬텀을 사용하여 품질보증(QA) 치료계획을 수립하였다. 원기둥 형태의 아크릴에 이온전리함을 삽입한 형태의 팬텀을 사용하여 치료계획과 실제 치료 빔 조사를 통해 측정된 절대선량 값을 비교하였으며, 평균 오차는 $0.7{\pm}1.4%$로 분석되었다. 이차원 다이오드 검출기 배열장치를 이용한 선량분포의 정확도 분석에서는 치료계획 시 계산된 선량분포와 실제 측정된 선량분포의 gamma evaluation (3%, 3 mm 기준)를 통해 평균 $97.3{\pm}2.9%$의 합격률(pass rate)로 타당성 있는 정확도를 보여주었다. 본 연구를 통해 선량분포 측면에서 기존 쐐기필터를 이용한 접선 조사방식의 방사선치료 대비 T-B IMRT의 장점을 확인할 수 있었고, T-B IMRT에 적합하게 수립된 품질보증 과정을 통해 실제 조사되는 선량의 정확도를 확인할 수 있었다.

Keywords

References

  1. Woo TC, Pignol JP, Rakovitch E, et al: Body radiation exposure in breast cancer radiotherapy: impact of breast IMRT and virtual wedge compensation technique. Int J Radiat Oncol Biol Phys 65:52-58 (2006) https://doi.org/10.1016/j.ijrobp.2005.11.023
  2. Borghero YO, Salehpour M, McNeese MD, et al: Multileaf field-in-field forward-planned intensity-modulated dose compensation for whole-breast irradiation is associated with reduced contralateral breast dose: a phantom model comparison. Radiother Oncol 82:324-328 (2007) https://doi.org/10.1016/j.radonc.2006.10.011
  3. Hong L, Hunt M, Chui C, et al: Intensity-modulated tangential beam irradiation of the intact breast. Int J Radiat Oncol Biol Phys 44:1155-1164 (1999) https://doi.org/10.1016/S0360-3016(99)00132-7
  4. Van Asselen B, Raaijmakers CP, Hofman P, et al: An improved breast irradiation technique using three-dimensional geometrical information and intensity modulation. Radiother Oncol 58:341-347 (2001) https://doi.org/10.1016/S0167-8140(00)00278-4
  5. Chui CS, Hong L, Hunt M, et al: A simplified intensity modulated radiation therapy technique for the breast. Med Phys 29:522-529 (2002) https://doi.org/10.1118/1.1460875
  6. Bhatnagar AK, Brandner E, Sonnik D, et al: Intensity modulated radiation therapy (IMRT) reduces the dose to the contralateral breast when compared to conventional tangential fields for primary breast irradiation. Breast Cancer Res Treat 96:41-46 (2006) https://doi.org/10.1007/s10549-005-9032-8
  7. Selvaraj RN, Beriwal S, Pourarian RJ, et al: Clinical implementation of tangential field intensity modulated radiation therapy (IMRT) using sliding window technique and dosimetric comparison with 3D conformal therapy (3DCRT) in breast cancer. Med Dosim 32:299-304 (2007) https://doi.org/10.1016/j.meddos.2007.03.001
  8. Herrick JS, Neill CJ, Rosser PF: A comprehensive clinical 3-dimensional dosimetric analysis of forward planned IMRT and conventional wedge planned techniques for intact breast radiotherapy. Med Dosim 33:62-70 (2008) https://doi.org/10.1016/j.meddos.2007.06.001
  9. Jagsi R, Moran J, Marsh R, et al: Evaluation of four techniques using intensity-modulated radiation therapy for comprehensive locoregional irradiation of breast cancer. Int J Radiat Oncol Biol Phys 78:1594-1603 (2010) https://doi.org/10.1016/j.ijrobp.2010.04.072
  10. Schubert LK, Gondi V, Sengbusch E, et al: Dosimetric comparison of left-sided whole breast irradiation with 3DCRT, forward-planned IMRT, inverse-planned IMRT, helical tomotherapy, and topotherapy. Radiother Oncol 100:241-246 (2011) https://doi.org/10.1016/j.radonc.2011.01.004
  11. Shepard DM, Earl MA, Li XA, et al: Direct aperture optimization: a turnkey solution for step-and-shoot IMRT. Med Phys 29:1007-1018 (2002) https://doi.org/10.1118/1.1477415
  12. Zhang G, Jiang Z, Shepard D, et al: Direct aperture optimization of breast IMRT and the dosimetric impact of respiration motion. Phys Med Biol 51:N357-369 (2006) https://doi.org/10.1088/0031-9155/51/20/N01
  13. Ahunbay EE, Chen GP, Thatcher S, et al: Direct aperture optimization-based intensity-modulated radiotherapy for whole breast irradiation. Int J Radiat Oncol Biol Phys 67:1248-1258 (2007) https://doi.org/10.1016/j.ijrobp.2006.11.036
  14. Wu Q, Mohan R, Morris M, et al: Simultaneous integrated boost intensity modulated radiotherapy for locally advanced headand- neck squamous cell carcinomas. I: dosimetric results. Int J Radiat Oncol Biol Phys 56:573-585 (2003) https://doi.org/10.1016/S0360-3016(02)04617-5
  15. Cao J, Roeske JC, Chmura SJ, et al: Calculation and prediction of the effect of respiratory motion on whole breast radiation therapy dose distributions. Med Dosim 34:126-132 (2009) https://doi.org/10.1016/j.meddos.2008.07.002
  16. Leonard CE, Tallhamer M, Johnson T, et al: Clinical experience with image-guided radiotherapy in an accelerated partial breast intensity-modulated radiotherapy protocol. Int J Radiat Oncol Biol Phys 76:528-534 (2010) https://doi.org/10.1016/j.ijrobp.2009.02.001
  17. Sijtsema NM, Van Dijk-Peters FB, Langendijk JA, et al: Electronic portal images (EPIs) based position verification for the breast simultaneous integrated boost (SIB) technique. Radiother Oncol 102:108-114 (2012) https://doi.org/10.1016/j.radonc.2011.10.007
  18. Korreman SS, Pedersen AN, Nøttrup TJ, et al: Breathing adapted radiotherapy for breast cancer: comparison of free breathing gating with the breath-hold technique. Radiother Oncol 76:311-318 (2005) https://doi.org/10.1016/j.radonc.2005.07.009
  19. Korreman SS, Juhler-Nøttrup T, Persson GF, et al: The role of image guidance in respiratory gated radiotherapy. Acta Oncol 47:1390-1396 (2008) https://doi.org/10.1080/02841860802282786