• 제목/요약/키워드: Q-switched Nd:$YVO_4$ laser

검색결과 9건 처리시간 0.025초

연속 발진 다이오드 레이저로 여기된 수동형 Q-스위치 Nd:YVO4 레이저의 출력 펄스 안정화 (Stabilization of Output Pulses from a Passively Q-switched Nd:YVO4 Laser Pumped by a Continuous-wave Laser Diode)

  • 안승인;박윤배;여환섭;이준호;이강인;이종훈
    • 한국광학회지
    • /
    • 제20권5호
    • /
    • pp.276-280
    • /
    • 2009
  • Cr:YAG 결정을 포화흡수체로 사용하여 수동형 Q-스위치시킨 다이오드 레이저 여기 Nd:$YVO_4$ 레이저를 제작하였다. Cr:YAG 결정의 한 면에 여기 빛 파장(808 nm)에 대해 고반사 코팅을 한 후, Nd:$YVO_4$ 결정과 접촉시켜 공진기를 구성하였다. Cr:YAG의 한 면에 여기 다이오드 레이저를 반사시키는 코팅을 입혀 공진기의 광변환 효율을 높임과 동시에, 여기빔에 의한 포화흡수체의 표백현상을 방지하여 안정된 출력이 나오게 하였다. 레이저 이득 매질 및 포화흡수체의 온도는 열전 냉각기와 냉각수를 사용하여 안정화 시켰다. 온도안정화를 시킨 상태에서 발진되는 펄스의 첨두 출력 요동(peak to peak)은 4%였다. 다이오드 레이저의 출력이 1 W일 때, 출력 펄스의 반복률은 평균 9 KHz 였으며, 최소 펄스폭은 7.11 ns, 최고 출력은 16.27 mW였다.

고효율 플라즈마 디스플레이 패널을 위한 T-형 ITO 전극의 레이저 직접 패터닝시 레이저 스캔 속도의 영향 (Effect of Laser Scanning Speed on the Laser Direct Patterning of T-shaped Indium Tin Oxide (ITO) Electrode for High Luminous AC Plasma Display Panels)

  • 이조휘;조의식;권상직
    • 한국전기전자재료학회논문지
    • /
    • 제23권2호
    • /
    • pp.133-136
    • /
    • 2010
  • Laser direct patterning is one of new methods which are able to replace a conventional photolithography. In order reduce the fabrication cost and to improve the luminous efficiency of AC plasma display panels (PDPs), in this experiment, a Q-switched Nd:$YVO_4$ laser was used to fabricate T-shaped indium tin oxide (ITO) display electrodes. For the laser beam scanning speed from 100 mm/sec to 800 mm/sec, T-shaped ITO patterns were clearly obtained and investigated. The experimental results showed that the optimized T-shaped ITO electrode was obtained when the lasers scanning speed was 300 mm/s.

이층 박막 구조에서 ITO 전극의 레이저 직접 패터닝 시레이저 식각 패턴 중첩 비율의 변화 (Overlapping Rates of Laser Spots on the Laser Direct Patterning of ITO Electrode in the Double-layer Structure of Thin Film)

  • 왕건훈;박정철;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제25권5호
    • /
    • pp.377-380
    • /
    • 2012
  • Laser direct patterning of indium tin oxide(ITO) is one of new methods of direct etching process to replace the conventional photolithography. A diode pumped Q-switched Nd:$YVO_4$ (${\lambda}$= 1,064 nm) laser was used to produce ITO electrode on various transparent oxide semiconductor films such as zinc oxide(ZnO). The laser direct etched ITO patterns on ZnO were compared with those on glass substrate and were considered in terms of the overlapping rate of laser beam. In case of the laser etching on double-layer, it was possible to obtain the higher overlapping rate of laser beam.

Nd:YVO4 Laser Patterning of Various Transparent Conductive Oxide Thin Films on Glass Substrate at a Wavelength of 1,064 nm

  • Wang, Jian-Xun;Kwon, Sang Jik;Cho, Eou Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.59-62
    • /
    • 2013
  • At an infra-red (IR) wavelength of 1,064 nm, a diode-pumped Q-switched $Nd:YVO_4$ laser was used for the direct patterning of various transparent conductive oxide (TCO) thin films on glass substrate. With various laser beam conditions, the laser ablation results showed that the indium tin oxide (ITO) film was removed completely. In contrast, zinc oxide (ZnO) film was not etched for any laser beam conditions and indium gallium zinc oxide (IGZO) was only ablated with a low scanning speed. The difference in laser ablation is thought to be due to the crystal structures and the coefficient of thermal expansion (CTE) of ITO, IGZO, and ZnO. The width of the laser-patterned grooves was dependent on the film materials, the repetition rate, and the scanning speed of the laser beam.

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • 반도체디스플레이기술학회지
    • /
    • 제18권3호
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

스퍼터링된 산화 아연 박막의 레이저 직접 식각 시 기판에 의한 영향 (Effects of Various Substrates on the Laser Direct Etching of the Sputtered ZnO Films)

  • 오기택;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제26권12호
    • /
    • pp.894-898
    • /
    • 2013
  • Zinc oxide(ZnO) was sputtered on various glass and flexible substrates such as polyethylene terephthalate(PET) and polycarbonate(PC). A Q-switched $Nd:YVO_4$ laser with a wavelength of 1,064 nm was used for the direct etching of ZnO films. It was possible to obtain laser etched line patterns on the ZnO films on PC substrate at some specific laser beam conditions. In the flexible substrates, more thermal energy of laser beam is expected to be spreaded for the etching process.

Selective Laser Direct Patterning of Indium Tin Oxide on Transparent Oxide Semiconductor Thin Films

  • Lee, Haechang;Zhao, Zhenqian;Kwon, Sang Jik;Cho, Eou Sik
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.6-11
    • /
    • 2019
  • For a wider application of laser direct patterning, selective laser ablation of indium tin oxide (ITO) film on transparent oxide semiconductor (TOS) thin film was carried out using a diode-pumped Q-switched Nd:YVO4 laser at a wavelength of 1064 nm. In case of the laser ablation of ITO on indium gallium zinc oxide (IGZO) film, both of ITO and IGZO films were fully etched for all the conditions of the laser beams even though IGZO monolayer was not ablated at the same laser beam condition. On the contrary, in case of the laser ablation of ITO on zinc oxide (ZnO) film, it was possible to etch ITO selectively with a slight damage on ZnO layer. The selective laser ablation is expected to be due to the different coefficient of thermal expansion (CTE) between ITO and ZnO.

플렉서블 기판 전/후면에서의 레이저를 이용한 ITO/Ag/ITO 전극층의 식각 특성 (Laser Etching Characteristics of ITO/Ag/ITO Conductive Films on Forward/Reverse Sides of Flexible Substrates)

  • 남한엽;권상직;조의식
    • 한국전기전자재료학회논문지
    • /
    • 제29권11호
    • /
    • pp.707-711
    • /
    • 2016
  • ITO/Ag/ITO conductive films on PET (polyethylene terephthalate) was etched by a Q-switched diode-pumped neodymiun-doped yttrium vanadate (Nd:YVO4, ${\lambda}=1064nm$) laser. During the laser direct etching, the laser beam was incident on the two different directions of PET and the etching patterns were investigated and analyzed. At a lower repetition rate of laser pulse, the larger laser etched patterns were obtained by laser beam incident on reverse side of PET substrate. On the contrary, at a higher repetition rate, it was possible to find the larger etched patterns in case of the laser beam incidence on forward side of PET substrate. For the laser beam incidence on reverse side, the laser beam is expected to be transferred and scattered through the PET substrate and the laser beam energy is thought to be dependent on the etch laser pulse beam energy.

Efficient Single-Pass Optical Parametric Generation and Amplification using a Periodically Poled Stoichiometric Lithium Tantalate

  • Yu, Nan-Ei;Lee, Yong-Hoon;Lee, Yeung-Lak;Jung, Chang-Soo;Ko, Do-Kyeong;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • 제11권4호
    • /
    • pp.192-195
    • /
    • 2007
  • A high-conversion efficiency, nanosecond pulsed optical parametric generation and amplification with repetition rate of 20 kHz based on a periodically poled MgO-doped stoichiometric lithium tantalate was presented. Pumped by a Q-switched $Nd:YVO_4$ laser at 1064 nm with a pumping power of 4.8W, the generated output power was 1.6W for the signal and idler waves, achieving a slope efficiency of 50%. Using a seed source at signal wave the amplified signal output-pulse energy reached $65{\mu}J$. The obtained maximum gain was 72.4 dB.