KSII Transactions on Internet and Information Systems (TIIS)
/
v.9
no.11
/
pp.4291-4310
/
2015
This paper investigates the traffic offloading over unlicensed bands for two-tier multi-mode small cell networks. We formulate this problem as a Stackelberg game and apply a hierarchical learning framework to jointly maximize the utilities of both macro base station (MBS) and small base stations (SBSs). During the learning process, the MBS behaves as a leader and the SBSs are followers. A pricing mechanism is adopt by MBS and the price information is broadcasted to all SBSs by MBS firstly, then each SBS competes with other SBSs and takes its best response strategies to appropriately allocate the traffic load in licensed and unlicensed band in the sequel, taking the traffic flow payment charged by MBS into consideration. Then, we present a hierarchical Q-learning algorithm (HQL) to discover the Stackelberg equilibrium. Additionally, if some extra information can be obtained via feedback, we propose an improved hierarchical Q-learning algorithm (IHQL) to speed up the SBSs' learning process. Last but not the least, the convergence performance of the proposed two algorithms is analyzed. Numerical experiments are presented to validate the proposed schemes and show the effectiveness.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
v.1
/
pp.259-264
/
2006
It is well known that the uncertainty of the covariance parameters of the process noise (Q) and the observation errors (R) has a significant impact on Kalman filtering performance. Q and R influence the weight that the filter applies between the existing process information and the latest measurements. Errors in any of them may result in the filter being suboptimal or even cause it to diverge. The conventional way of determining Q and R requires good a priori knowledge of the process noises and measurement errors, which normally comes from intensive empirical analysis. Many adaptive methods have been developed to overcome the conventional Kalman filter's limitations. Starting from covariance matching principles, an innovative adaptive process noise scaling algorithm has been proposed in this paper. Without artificial or empirical parameters to be set, the proposed adaptive mechanism drives the filter autonomously to the optimal mode. The proposed algorithm has been tested using road test data, showing significant improvements to filtering performance.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.11
no.2
/
pp.107-112
/
2011
It is very difficult to factorize composite number, $n=pq$ to integer factorization, p and q that is almost similar length of digits. Integer factorization algorithms, for the most part, find ($a,b$) that is congruence of squares ($a^2{\equiv}b^2$ (mod $n$)) with using factoring(factor base, B) and get the result, $p=GCD(a-b,n)$, $q=GCD(a+b,n)$ with taking the greatest common divisor of Euclid based on the formula $a^2-b^2=(a-b)(a+b)$. The efficiency of these algorithms hangs on finding ($a,b$) and deciding factor base, B. This paper proposes a efficient algorithm. The proposed algorithm extracts B from integer factorization with 3 digits prime numbers of $n+1$ and decides f, the combination of B. And then it obtains $x$(this is, $a=fxy$, $\sqrt{n}$ < $a$ < $\sqrt{2n}$) from integer factorization of $n-2$ and gets $y=\frac{a}{fx}$, $y_1$={1,3,7,9}. Our algorithm is much more effective in comparison with the conventional Fermat algorithm that sequentially finds $\sqrt{n}$ < $a$.
We are interested in the problem of determining the best fitted circle to a set of data points in space. This can be usually obtained by minimizing the geometric distances or various approximate algebraic distances from the fitted circle to the given data points. In this paper, we propose an algorithm in such a way that the sum of the squares of the geometric distances is minimized in ${\mathbb{R}}^3$. Our algorithm is mainly based on the steepest descent method with a view of ensuring the convergence of the corresponding objective function Q(u) to a local minimum. Numerical examples are given.
Nowadays, learning of agents gets more and more useful in game environments. But it takes a long learning time to produce satisfactory results in game. So, we need a good method to shorten the learning time. In this paper, we present a strategy for improving the learning performance of Q-learning with prediction information. It refers to the chosen action at each status in the Q-learning algorithm, It stores the referred value at the P-table of prediction module, and then it searches some values with high frequency at the table. The values are used to renew second compensation value from the Q-table. Our experiments show that our approach gets the efficiency improvement of average 9% after the middle point of learning experiments, and that the more actions in a status space, the higher performance.
Q-Learning, a representative algorithm of reinforcement learning, experiences repeatedly until estimation values about all state-action pairs of state space converge and achieve optimal policies. When the state space is high dimensional or continuous, complex reinforcement learning tasks involve very large state space and suffer from storing all individual state values in a single table. We introduce Q-Map that is new function approximation method to get classified policies. As an agent learns on-line, Q-Map groups states of similar situations and adapts to new experiences repeatedly. State-action pairs necessary for fine control are treated in the form of rule. As a result of experiment in maze environment and mountain car problem, we can achieve classified knowledge and extract easily rules from Q-Map
Proceedings of the Korean Operations and Management Science Society Conference
/
2002.05a
/
pp.652-656
/
2002
본 연구에서는 각 수요지간의 시간이 확률적으로 주어지는 경우의 TSP(Traveling Salesman Problem)를 다루고자 한다. 현실적으로, 도심의 교통 체증 등으로 인해서 각 지점간의 걸리는 시간은 시간대별로 요일별로 심한 변화를 일으키기 마련이다. 그러나, 현재까지의 연구 결과는 수요지간의 경과시간이 확정적으로 주어지는 경우가 대부분으로, 도심물류 등에서 나타나는 현실적인 문제를 해결하는데는 많은 한계가 있다 본 연구에서는 문제의 해법으로 강화학습기법의 하나인 Q학습(Q-Learning)과 Neural Network를 활용한 효율적인 알고리즘을 제시한다.
The Transactions of the Korea Information Processing Society
/
v.2
no.1
/
pp.55-65
/
1995
Existing multiple-row downdating algorithms have adopted a CFD(Cholesky Factor Downdating) that recursively downdates one row at a time. The CFD based algorithm requires 5/2p $n^{2}$ flops(floating point operations) downdating a p$\times$n observation matrix $Z^{T}$ . On the other hands, a HCFD(Hybrid CFD) based algorithm we propose in this paper, requires p $n^{2}$+6/5 $n^{3}$ flops v hen p$\geq$n. Such a HCFD based algorithm factorizes $Z^{T}$ at first, such that $Z^{T}$ = $Q_{z}$ RT/Z, and then applies the CFD onto the upper triangular matrix Rt/z, so that the total number of floating point operations for downdating $Z^{T}$ would be significantly reduced compared with that of the CFD based algorithm. Benchmark tests on the Sun SPARC/2 and the Tolerant System also show that performance of the HCFD based algorithm is superior to that of the CFD based algorithm, especially when the number of rows of the observation matrix is large.rge.
The Journal of Korean Institute of Communications and Information Sciences
/
v.37
no.3A
/
pp.141-150
/
2012
The WiMedia Alliance has specified a Distributed Medium Access Control (D-MAC) protocol based on UWB for high speed wireless home networks and WPANs. In this paper, firstly, a time slot reservation protocol for relay transmission is proposed. Furthermore, we propose a novel relay node selection algorithm adaptive to current UWB link transmission rate. The proposed relay node selection algorithm has compatibility with current WiMedia D-MAC standard and is executed at each device according to the SoQ as a QoS criterion.
Proceedings of the Society of Korea Industrial and System Engineering Conference
/
2002.05a
/
pp.343-348
/
2002
We are concerned with a long-term replenishment contract for the ARIMA demand process in a supply chain. The chain is composed of one supplier, one buyer and consumers for a product. The replenishment contract is based upon the well-known (s, Q) policy but allows us to contract future replenishments at a time with a price discount. Due to the larger forecast error of future demand, the buyer should keep a higher level of safety stock to provide the same level of service as the usual (s, Q) policy. However, the buyer can reduce his purchase cost by ordering a larger quantity at a discounted price. Hence, there exists a trade-off between the price discount and the inventory holding cost. For the ARIMA demand process, we present a model for the contract and an algorithm to find the number of the future replenishments. Numerical experiments show that the proposed algorithm is efficient and accurate.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.