This study aimed to find the way to help participants build capacity in rural development projects, through some case studies and Q-methodology. Decentralization and diffusion of bottom-up approach in rural development projects are the main contextual factors in this study. With the ethos of bottom-up approach in rural development, the human and financial inputs for capacity building increased drastically in the area of rural development policy. Four types of capacity building methods were identified in this study; training, consulting, learning organization, and forum. Theses methods were used more at planning step than implementation step in rural development projects. The government's effort to strengthen leadership in rural areas should be continued. The existing government's training program for capacity building had better include more diverse clients. Actions for capacity building should be centered on the needs of the participants in fields. Especially, organizing learning units is very important. Governments' rural development policy should establish the proper process which can help local actors plan their projects with enough time span.
Investment in research and development (R&D) is critical in the information technology (IT) firms, where newer and better technology is a quintessential goal that directly affects innovation and competitive advantage. This study investigates how R&D investment influences firm performance and value, and how the effect of R&D investment differs between IT hardware and software firms. We also analyze the relationship between firm age and R&D investment in order to identify learning effects on continuous R&D investment. The empirical investigation in this study, based on longitudinal archival data from 2001 to 2010, found a significant effect of R&D investment on firm performance in IT firms. Further, this study demonstrates causal relationship between firm age, and verifies that learning effects are present in R&D investment. Moreover, the results are found to differ between IT hardware and IT software firms.
Mobile edge computing (MEC), which enables mobile terminals to offload computational tasks to a server located at the user's edge, is considered an effective way to reduce the heavy computational burden and achieve efficient computational offloading. In this paper, we study a multi-user MEC system in which multiple user devices (UEs) can offload computation to the MEC server via a wireless channel. To solve the resource allocation and task offloading problem, we take the total cost of latency and energy consumption of all UEs as our optimization objective. To minimize the total cost of the considered MEC system, we propose an DRL-based method to solve the resource allocation problem in wireless MEC. Specifically, we propose a Asynchronous Advantage Actor-Critic (A3C)-based scheme. Asynchronous Advantage Actor-Critic (A3C) is applied to this framework and compared with DQN, and Double Q-Learning simulation results show that this scheme significantly reduces the total cost compared to other resource allocation schemes
인터넷을 통해 주위 사물과 연결된 차량은 사용자에게 편리성을 제공하기 위해 다양한 콘텐츠를 요구하는데 클라우드로부터 가져오는 시간이 비교적 오래 걸리기 때문에 차량과 물리적으로 가까운 위치에 캐싱하는 기법들이 등장하고 있다. 본 논문에서는 기반 시설이 밀집하게 설치된 도시 환경에서 maximum distance separable(MDS) 코딩을 사용해 road side unit(RSU)에 캐싱하는 방법에 대해 연구하였다. RSU의 중복된 서비스 커버리지 지역을 고려하여 차량의 콘텐츠 요구에 대한 RSU hit ratio를 높이기 위해 deep Q-learning(DQN)를 사용하였다. 실험 결과 비교 알고리즘보다 hit raito 측면에서 더 높은 성능을 보이는 것을 증명하였다.
최근 실시간 응답 및 처리에 민감한 서비스들이 급증하면서 멀티액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 주목받고 있다. 사용자들의 잦은 이동성 때문에 MEC 서버들 사이에서의 마이그레이션은 중요한 문제로 다뤄진다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경을 고려하였으며, 강화학습 기법인 Q-learning 을 사용하여 마이그레이션 여부 및 대상을 결정하는 기법을 제안하였다. 제안 기법의 목적은 지연 제약조건을 만족시키면서 차량 엣지 컴퓨팅 서버(VECS) 사이의 로드 밸런싱을 최적화하는 것이다. 제안 기법의 성능 비교를 통하여 다른 기법들보다 로드 밸런싱 측면에서 약 22-30%, 지연 제약조건 만족도 측면에서 약 20-31%로 더 좋은 성능을 보임을 확인하였다.
With the increasing number of mobile device users worldwide, utilizing mobile edge computing (MEC) devices close to users for content caching can reduce transmission latency than receiving content from a server or cloud. However, because MEC has limited storage capacity, it is necessary to determine the content types and sizes to be cached. In this study, we investigate a caching strategy that increases the hit ratio from small base stations (SBSs) for mobile users in a heterogeneous network consisting of one macro base station (MBS) and multiple SBSs. If there are several SBSs that users can access, the hit ratio can be improved by reducing duplicate content and increasing the diversity of content in SBSs. We propose a Deep Q-Network (DQN)-based caching strategy that considers time-varying content popularity and content redundancy in multiple SBSs. Content is stored in the SBS in a divided form using maximum distance separable (MDS) codes to enhance the diversity of the content. Experiments in various environments show that the proposed caching strategy outperforms the other methods in terms of hit ratio.
최근 사물 인터넷(IoT)의 발전으로 계산 집약적이거나 지연시간에 민감한 태스크가 증가하면서, 모바일 엣지 컴퓨팅 기술이 주목받고 있지만 지상에 고정되어 있는 MEC 서버는 사용자의 요구사항 변화에 따라 서버의 위치를 변경하거나 유연하게 대처할 수 없다. 이 문제를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 엣지 서비스를 제공하는 기법이 연구되고 있다. 그러나 UAV는 지상 MEC와는 달리 배터리 용량이 제한되어 있어 태스크 마이그레이션을 통해 에너지 사용량을 최소화하는 것이 필요하다. 본 논문에서는 MEC 서버들 사이의 로드 밸런싱과 UAV MEC 서버의 에너지 효율성을 최적화하기 위해 강화학습 기법인 Q-learning을 이용한 태스크 마이그레이션 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 UAV의 개수에 따라 실험을 진행하여 잔여 에너지와 로드 밸런싱 측면에서 성능을 분석한다.
지식정보사회의 변화와 정보통신기술의 발달과 대중화에 따른 교육의 개혁에 대한 요구가 증대되고 있으며, 그 요구에 부응하고자 최근 가상교육에 대한 관심이 고조되고 있다. 가상교육은 '정보 전달 모델'을 지양하고, '지식 구성 모델'을 채택해야 한다. 이에 가상교육 환경에서 학습자가 다양한 상호작용을 통하여 지식을 재구성하거나 생성할 수 있는 기회를 제공하고 지원할 수 있는 방안으로서 '프로젝트기반학습' 방법의 도입과 더불어서 '가상학습커뮤니티'의 구성과 운영이 필요하다. 본 연구는 교사교육에 초점을 두고, 프로젝트기반학습 방법의 활용 방안과 가상학습커뮤니티의 구성 및 운영 방안을 체계화하고, 실제 운영이 가능한 프로젝트 기반 가상학습커뮤니티 운영 시스템을 구축하였다. 시스템은 5가지 큰 메뉴와 세부 메뉴로 이루어지는데, Home(커뮤니티운영취지, 알림방, 프로젝트목록, 요구함), 프로젝트학습센터(학습활동 준비실, 모둠학습실, 발표회장), 만남의 광장(모둠별 멘터링 신청, 생각 나눔터, 전문가와의 만남, 설문조사참여, 포럼참여, 작품전시회), 자료창고(프로젝트학습사례, 프로젝트학습자료, 교사교육자료, 기타자료), 관리기능(프로젝트 관리, 프로젝트 사례, 아이디어뱅크, 파트너찾기, 교수자대화방, 자료나누기, 경험나누기, 설문조사관리, 포럼관리) 등으로 구성된다.
인공신경망회로 목표 중의 하나는 최소한의 회로구성으로 구현가능함수를 가능한 많게 하는데 있다. 본 논문은 인공신경망회로의 가장 기본이 되는 하나의 입력노드와 하나의 출력노드, 그리고 입출력에 다단(multi-level)값을 갖는 단층(입출력 2 layer) 다단 코어넷(CoreNet)을 제안하고 그 처리 용량을 구하였고, 무게값 공간에서 구현 가능한 함수와 각 무게값 좌표(${\omega}$,${\theta}$)를 계산으로 구하여 한 함수의 구현 가능 여부를 알 수 있게 하였다. 또 입력 단계(level)값 설정 방법으로 cot(${\sqrt{x}}$)을 제안하였다. 제안된 p단 입력과 q단 출력을 갖는 코어넷의 처리용량(구현 가능한 함수의 수)은 $a_{p,q}={\frac{1}{2}}p(p-1)q^2-{\frac{1}{2}}(p-2)(3p-1)q+(p-1)(p-2)$임을 유도 증명하였다. 시뮬레이션으로 5단(level) 입력 값과, 6단 출력 값을 갖는 1(5)-1(6) 모델을 분석한 결과, cot(${\sqrt{x}}$) 입력 레벨링법에서 총 246가지의 함수가 구현가능 함을 보였다. 이 모델의 시뮬레이션 결과에서는 최대 219개의 함수가 수렴(구현 가능)하였고, 구현가능 함수 중에서 나머지 수렴되지 않은 27개의 함수는 무게값 공간에서 무게값 좌표를 계산하여 구현 가능함을 보였다. 이는 앞에서 제시된 코어넷 처리용량 $a_{5,6}(=246)$에 의한 계산 값과 일치하였다. 무게값 공간에서, 구현 가능한 함수가 차지하는 영역의 함수번호 매김 방법도 제시하여 구현 가능함수의 번호도 알 수 있도록 하였다.
현대 사회는 고도의 정보화 사회로서 평생 교육을 강조하며, 학교 현장에서는 학습자의 창의적 학습의 강조와 더불어 다양한 교수-학습 방법을 요구한다. 이러한 요구사항을 만족시키는 학습중의 하나가 웹을 활용한 자기 주도적 교수-학습 방법이다. 그러나 현재까지 개발된 대부분의 학습 자료는 단순 학습을 위한 웹 기반 교수-학습 자료이거나 단순한 문제 은행 시스템이 개발되어 있으며, 이러한 기존 학습 시스템들은 문제 해결 학습을 자기 주도적으로 수행할 수 있는 학습을 지원하기는 미흡하다. 그러므로 본 논문에서는 웹에서 문제 해결 학습과 자기 주도적 학습을 함께 활용하는 학습 시스템을 제안한다. 제안한 학습 시스템을 이용하여 학습자는 교과의 기본 개념과 원리를 학습한 후, 문제를 기반으로 하여 학습자의 사고력을 배양하고 스스로 학습 수준의 조정을 통하여 효율적인 학습을 수행한다. 제안한 학습 시스템은 중등학교 수학 교육에 적용을 보였으며, 학습자 스스로 문제 은행으로부터 선택한 문제를 이용하여 시험과 학력 수준의 파악 및 교수자와 온라인 게시판을 통하여 의문점 해결을 지원한다. 또한 자료실과 묻고 답하기를 이용한 학습자와 학습자, 교수자와 학습자간의 상호 정보를 공유함으로써 학습의 효율성을 높일 수 있는 것으로 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.