In this paper, the authors present a row dynamic route planning by Q-learning. The proposed algorithm is executed in a cellular automation based traffic simulator, which is also newly created. In Vehicle Information and Communication System(VICS), which is an active field of Intelligent Transport System(ITS), information of traffic congestion is sent to each vehicle at real time. However, a centralized navigation system is not realistic to guide millions of vehicles in a megalopolis. Autonomous distributed systems should be more flexible and scalable, and also have a chance to focus on each vehicles demand. In such systems, each vehicle can search an own optimal route. We employ Q-learning of the reinforcement learning method to search an optimal or sub-optimal route, in which route drivers can avoid traffic congestions. We find some applications of the reinforcement learning in the "static" environment, but there are ...
본 논문에서는 다수의 센서 노드로 구성된 Internet of Things (IoT) 환경에서 새로운 환경에 대해 적응하는데 걸리는 시간을 줄이기 위한 새로운 스케줄링 기법을 제안한다. IoT 환경에서는 데이터 수집 및 전송 패턴이 사전에 정의되어 있지 않기 때문에 기존 정적인 Packet scheduling 기법으로는 한계가 있다. Q-learning은 네트워크 환경에 대한 사전지식 없이도 반복적 학습을 통해 Scheduling policy를 확립할 수 있다. 본 논문에서는 기존 Q-learning 스케줄링 기법을 기반으로 각 큐의 패킷 도착률에 대한 bound 값을 이용해 Q-table과 Reward table을 초기화 하는 새로운 Q-learning 스케줄링 기법을 제안한다. 시뮬레이션 결과 기존 기법에 비해 변화하는 패킷 도착률 및 서비스 요구조건에 적응하는데 걸리는 시간이 감소하였다.
Purpose: The purpose of this study was to identify and understand the self-directed learning patterns of nurses. Q methodology was used to collect the data. Method: For the research method, 43 Q-statements were collected through individual interviews and a review of related literature. The 43 Q-statements were classified by the 34 participants in the study and the data was analyzed by the PC-QUANL program with principal component analysis. Result: There were 4 different patterns of self-directed learning classified as follows : Nurses in Type I the Future Provision Type, studied to promote their own professional development and leadership qualities for the future. Nurses in Type II, the Learning Passion Type, enjoyed learning something new and had a strong learning desire. Nurses in Type III, the Self-reflective Type, continuously evaluated self and their own practice by introspection. Nurses in Type IV, the Accompanying Companion Type, studies with companion support and maintained a collaborative relationship rather than competing with each other. Conclusion: This study explains and allows us to understand self-directed learning in nurses. Thus this study will contribute to building a theoretical base for the development of a self-directed learning model in nursing practice.
군집 로봇시스템에서 개개의 로봇은 스스로 주위의 환경과 자신의 상태를 스스로 판단하여 행동하고, 필요에 따라서는 다른 로봇과 협조를 통하여 어떤 주어진 일을 수행할 수 있어야 한다. 따라서 개개의 로봇은 동적으로 변화하는 환경에 잘 적응할 수 있는 학습과 진화능력을 갖는 것이 필수적이다. 본 논문에서는 SVM을 여러 개 이용한 강화학습과 분산유전알고리즘을 이용한 새로운 자율이동로봇의 행동학습 및 진화학습을 제안한다. 또한 개개의 로봇이 통신을 통하여 염색체를 교환하는 분산유전알고리즘은 각기 다른 환경에서 학습한 우수한 염색체로부터 자신의 능력을 향상시킨다. 특히 본 논문에서는 진화의 성능을 향상시키기 위하여 Cascade SVM을 기반으로 한 강화학습의 특성을 이용한 선택 교배방법을 채택하였다.
강화학습에서 temporal-credit 할당 문제 즉, 에이전트가 현재 상태에서 어떤 행동을 선택하여 상태전이를 하였을 때 에이전트가 선택한 행동에 대해 어떻게 보상(reward)할 것인가는 강화학습에서 중요한 과제라 할 수 있다. 본 논문에서는 조합최적화(hard combinational optimization) 문제를 해결하기 위한 새로운 메타 휴리스틱(meta heuristic) 방법으로, greedy search뿐만 아니라 긍정적 반응의 탐색을 사용한 모집단에 근거한 접근법으로 Traveling Salesman Problem(TSP)를 풀기 위해 제안된 Ant Colony System(ACS) Algorithms에 Q-학습을 적용한 기존의 Ant-Q 학습방범을 살펴보고 이 학습 기법에 다양화 전략을 통한 상태전이와 TD-오류를 적용한 학습방법인 Ant-TD 강화학습 방법을 제안한다. 제안한 강화학습은 기존의 ACS, Ant-Q학습보다 최적해에 더 빠르게 수렴할 수 있음을 실험을 통해 알 수 있었다.
In this paper, we introduce q-sigmoid polynomials combining q-cosine function. We find several properties and identities of these polynomials which are related to sigmoid function using deep learning.
본 연구는 유튜브를 활용한 기초조리실습교과목에 플립드러닝 교수학습방법을 적용하여 학습 전과 후에 따른 효과를 파악하고 학습과정을 통해 학습자의 주관적인 인식을 분석하여 교육과정이 적절히 진행되고 있는지에 대해 연구하고자 한다. 조사기간은 2020년 08월 01일부터 09월 10일까지 진행되었으며, Q방법론의 연구 설계에 따라 Q표본 선정, P표본 선정, Q소팅, 코딩과 리쿠르팅, 결론 및 논의로 총 5단계로 구분하여 진행하였다. 분석결과 제 1유형(N=5) : 선행학습 효과(Prior Learning effect), 제 2유형(N=7) : 시뮬레이션실습효과(Simulation practice effect), 제 3유형(N=3) : 자기효능감 효과 (self-efficacy effect)로 각각 고유의 특징을 가진 유형으로 분석되었다. 결과적으로 유튜브를 활용한 기초조리실습과목의 플립드러닝 교수학습방법을 적용함으로서 적극적인 학습자들에게는 수업의 흥미유발, 자신감 상승 등의 긍정적인 효과가 나타났으나 일부 학습자의 경우 수업운영방식의 시스템이해 부족, 타 과목에 비해 실습회수 부족 등은 추후 해결되어야 할 방안으로 사료된다.
현재 국내에서는 자율주행차량의 상용화를 목표로 다양한 노력을 기울이고 있으며 자율주행차량이 운영 가이드라인에 따라 안전하고 신속하게 주행할 수 있는 연구들이 대두되고 있다. 본 연구는 자율주행차량의 경로탐색을 미시적인 관점으로 바라보며 Deep Q-Learning을 통해 자율주행차량의 차로변경을 학습시켜 효율성을 입증하고자 한다. 이를 위해 SUMO를 사용하였으며, 시나리오는 출발지에서 랜덤 차로로 출발하여 목적지의 3차로까지 차로변경을 통해 우회전하는 것으로 설정하였다. 연구 결과 시뮬레이션 기반의 차로변경과 Deep Q-Learning을 적용한 시뮬레이션 기반의 차로변경으로 구분하여 분석하였다. 평균 통행 속도는 Deep Q-Learning을 적용한 시뮬레이션의 경우가 적용하지 않은 경우에 비해 약 40% 향상되었으며 평균 대기 시간은 약 2초, 평균 대기 행렬 길이는 약 2.3대 감소하였다.
Reinforcement learning performs learning through interacting with trial-and-error in dynamic environment. Therefore, in dynamic environment, reinforcement learning method like Q-learning and TD(Temporal Difference)-learning are faster in learning than the conventional stochastic learning method. However, because many of the proposed reinforcement learning algorithms are given the reinforcement value only when the learning agent has reached its goal state, most of the reinforcement algorithms converge to the optimal solution too slowly. In this paper, we present COMREL(COMpressed REinforcement Learning) algorithm for finding the shortest path fast in a maze environment, select the candidate states that can guide the shortest path in compressed maze environment, and learn only the candidate states to find the shortest path. After comparing COMREL algorithm with the already existing Q-learning and Priortized Sweeping algorithm, we could see that the learning time shortened very much.
International Journal of Internet, Broadcasting and Communication
/
제15권3호
/
pp.166-175
/
2023
Reinforcement learning can be applied to a wide variety of problems. However, the fundamental limitation of reinforcement learning is that it is difficult to derive an answer within a given time because the problems in the real world are too complex. Then, with the development of neural network technology, research on deep reinforcement learning that combines deep learning with reinforcement learning is receiving lots of attention. In this paper, two types of neural networks are combined with reinforcement learning and their characteristics were compared and analyzed with existing value-based reinforcement learning algorithms. Two types of neural networks are FNN and CNN, and existing reinforcement learning algorithms are SARSA and Q-learning.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.