원활한 교통의 흐름은 현대 사회에서 매우 중요한 요소이며, 교통체증은 환경 및 경제 등 다양한 형태로 문제를 초래했다. 이러한 문제를 해결하기 위해 최근 인공지능을 활용한 지능형교통체계(Intelligent Transport System)가 주목받고 있다. 본 논문에서는 강화학습 기법을 활용하여 교차로 각 방향의 차량과 보행자를 동시에 고려하여 교통의 흐름을 원활하게 하면서 동시에 불만족도를 낮출 수 있는 알고리즘을 제안한다. 제안하는 알고리즘을 적용한 교차로 신호체계 시뮬레이션 결과, 기존의 고정형 신호체계에 비해 차량·보행자의 불만족도를 상당히 낮출 수 있으며, 교차로의 교차하는 도로의 수가 많을수록 성능의 차이가 증가함을 확인하였다.
이 논문은 강화학습기반으로 지역난방 열사용자 기계실 설비의 열효율 향상을 시도하는 연구를 소개하며, 한 예시로서 모델을 특정하지 않는 강화학습 알고리즘인 딥큐러닝(deep Q learning)을 활용하는 학습 네트워크(DQN)를 구성하는 일반적인 방법을 제시한다. 또한 복수의 열에너지 기계실에 설치된 IoT 센서로부터 유입되는 방대한양의 데이터 처리에 있어 에너지 분야에 특화된 빅데이터 플랫폼 시스템과 열수요 통합관리시스템에 대하여 소개 한다.
최근 무선 네트워크에서 발생하는 계산 집약적이고 지연시간에 민감한 태스크를 처리하기 위해 모바일 엣지 서비스에 대한 연구가 진행되고 있다. 하지만 지상에 고정되어 있는 MEC는 출퇴근 시간과 같이 태스크 처리 요청이 일시적으로 급증하는 상황에 대해 유연하게 대처할 수 없다. 이를 해결하기 위해 UAV(Unmanned Aerial Vehicle)를 추가로 이용해 모바일 엣지 서비스를 제공하는 기술이 등장하였다. UAV는 지상 MEC 서버와 달리 배터리 용량이 제한되어 있어 UAV MEC 서버 간 로드 밸런싱을 통해 에너지 효율성을 최적화 하는 것이 필요하다. 따라서 본 논문에서는 UAV의 에너지 상태와 차량의 이동성을 고려하며 유전 알고리즘 기반의 태스크 오프로딩과 Q-learning 기반의 태스크 마이그레이션을 통한 로드 밸런싱 기법을 제안한다. 제안 시스템의 성능을 평가하기 위해 차량 속도와 수에 따른 실험을 진행하고, 로드 분산, 에너지 사용량, 통신 오버헤드, 지연 시간 만족도 측면에서 성능을 분석하였다.
4차 산업혁명으로 인공지능(AI, Artificial Intelligence) 관련 기술이 고도로 성장함에 따라 여러 분야에서 AI를 접목하는 사례가 증가하고 있다. 주요 원인은 정보통신기술이 발달됨에 따라 기하급수적으로 증가하는 데이터를 사람이 직접 처리·분석하는데 현실적인 한계가 있고, 새로운 기술을 적용하여 휴먼 에러에 대한 리스크도 감소시킬 수 있기 때문이다. 이번 연구에서는 '원격 전위 측정용터미널(T/B, Test Box)'로부터 수신된 데이터와 해당시점의 '원격 정류기' 출력을 수집 후, AI가 학습하도록 하였다. AI의 학습 데이터는 최초 수집된 데이터의 회기분석을 통한 데이터 전처리로 확보하였고, 학습모델은 심층 강화학습(DRL, Deep Reinforce-ment Learning) 알고리즘 중(中) Value기반의 Q-Learning모델이 적용하였다. 데이터 학습이 완료된 AI는 실제 도시가스 공급지역에 투입하여, 수신된 원격T/B 데이터를 기반으로 AI가 적절하게 대응하는지 검증하고, 이를 통해 향후 AI가 전기방식 관리에 적합한 수단으로 활용될 수 있는지 검증하고자 한다.
소인수분해와 같이 매우 큰 경우의 수를 탐색하고 연산하며 비교하는 작업에서 강점을 가지는 양자컴퓨터는현재 사용되는 암호체계를 붕괴시킬 수 있다는 점에서 위협이 될 수 있다. 하지만 화학, 머신러닝과 같은 분야에서는 대단히 큰 혁신을 가져올 차세대 컴퓨터로 주목받고 있으며, IBM, Google, Amazon과 같은 세계적인 IT 기업들이 이러한 양자컴퓨터 관련 연구개발에 적극적으로 투자하고 있다. 본 고에서는 양자컴퓨터의 최근 개발 현황과 양자컴퓨팅을 위한 플랫폼인 IBM Qiskit, Google Cirq, ProjectQ, Amazon Braket, Microsoft Azure Quantum, Intel Quantum SDK에 대해 알아보고자 한다.
양자컴퓨터는 매우 많은 경우의 수를 탐색하고 연산하는 데에 있어 이점을 가지며, 이는 소인수분해와 같은 작업에서 기존 컴퓨팅을 능가할 수 있다. 이러한 능력으로 인해 양자컴퓨터는 현재 사용되는 암호체계를 위협할 수 있다. 또한, 화학, 머신러닝 등 다양한 분야에서 혁신을 가져올 수 있는 차세대 컴퓨팅 환경으로 주목받고 있다. 현재 IBM, Google, Amazon 등의 세계적인 IT 기업들이 이 분야의 연구 및 개발에 적극적으로 투자하고 있으며 본고에서는 양자컴퓨터의 최근 개발현황과 양자컴퓨팅을 위한 플랫폼인 IBM Qiskit, Google Cirq, ProjectQ, Amazon Braket, Microsoft Azure Quantum, Intel Quantum SDK, Pennylane에 대해 알아보고자 한다.
제어 가능하고 상황에 따라 반응하는 아바타의 제작은 컴퓨터 게임 및 가상현실 분야에서 중요한 연구 주제이다. 최근에는 아바타 애니메이션과 제어의 사실성을 높이기 위해 대규모 동작 캡처 데이타가 활용되고 있다. 방대한 양의 동작 데이타는 넓은 범위의 자연스러운 인간 동작을 수용할 수 있다는 장점을 갖는다. 하지만 동작 데이타가 많아지면 적절한 동작을 찾는데 필요한 계산량이 크게 증가하여 대화형 아바타 제어에 있어 병목으로 작용한다. 이 논문에서 우리는 레이블링(labeling)이 되어있지 않은 모션 데이타로부터 아바타의 행동을 학습시키는 새로운 방법을 제안한다. 이 방법을 사용하면 최소의 실시간 비용으로 아바타를 애니메이션하고 제어하는 것이 가능하다. 본 논문에서 제시하는 알고리즘은 Q-러닝이라는 기계 학습 기법에 기초하여 아바타가 동적인 환경과의 상호작용에 따른 시행착오를 통해 주어진 상황에 어떻게 반응할지 학습하도록 한다. 이 접근 방식의 유효성은 아바타가 서로 간에, 그리고 사용자에 대해 상호작용하는 예를 보임으로써 증명한다.
원활한 작전 수행을 통한 국방력의 강화를 위해 전술네트워크의 기능은 필수적이다. 전시 상황에서 다양한 전술, 전략은 수많은 정보들을 근거로 한다. 이를 위해 정찰기를 비롯한 다양한 정보 수집 장치 및 자원들이 방대한 양의 정보 수집을 위해 사용되고, 이들 대다수는 전술네트워크를 통해 정보를 전달한다. 채널의 사용 여부를 판단하여 상황에 따라 경쟁 기반으로 채널에 접속을 하는 국방전술네트워크 환경에서, 매우 높은 이동성을 갖는 정찰기 등 고속 이동 노드는 불필요한 채널 점유로 인하여 잠재적인 성능 열화 문제가 발생할 수 있다. 본 논문에서는 채널 예약 시점을 정하는 경쟁 윈도우(Contention Window)의 크기를 경험적으로 학습시켜 네트워크 처리량을 증가시키는 Learning-Backoff 방식의 무전 채널 접속 방법을 제안한다. 제안하는 방법은 고속 이동 노드의 수가 많아짐에 따라 더욱 좋은 성능을 보이고 있으며, 정찰기 4대가 운영되는 특정 작전 시나리오에 적용하였을 경우 처리량이 최대 25% 증가한다.
최근 4차 산업혁명에 따라 공장, 물류창고, 서비스영역에서 유연한 물류이송을 위한 자율 이동형 모바일 로봇의 사용이 증가하고 있다. 대규모 공장에서는 Simultaneous Localization and Mapping(SLAM)을 수행하기 위하여 많은 수작업이 필요하기 때문에 개선된 모바일 로봇 자율 주행에 대한 필요성이 대두되고 있다. 이에 따라 본 논문에서는 고정 및 이동 장애물을 피해 최적의 경로로 주행하는 Mapless Navigation에 대한 알고리즘을 제안하고자 한다. Mapless Navigation을 위하여 Deep Q Network(DQN)을 통해 고정 및 이동 장애물을 회피하도록 학습하였고 두 종류의 장애물 회피에 대하여 각각 정확도 90%, 93%를 얻었다. 또한 DQN은 많은 학습 시간을 필요로 하는데 이를 단축하기 위한 목표의 크기 변화 알고리즘을 제안하고 이를 시뮬레이션을 통하여 단축된 학습시간과 장애물 회피 성능을 확인하였다.
인지무선 에드혹 네트워크 (CRAHN : Cognitive Radio Ad-Hoc Networks)는 무선 서비스의 증가에 따른 주파수 자원부족을 극복할 수 있는 네트워크 기술이다. CRANH에서 주 사용자에 대한 간섭을 회피하기 위해 유휴채널을 확인하는 채널센싱이 필요하며, 주 사용자 출현시 빠른 유휴 채널선택을 통해 핸드오버로 인한 시간지연을 최소화 해야한다. 본 연구에서는 강화학습을 이용하여 CRANH에서 부 사용자의 채널 센싱의 대상을 축소하고 유휴채널의 가능성이 높은 채널을 우선적으로 센싱하도록함으로써 전송효율을 개선하였다. 또한 주기적인 센싱을 수행하지 않고 데이터의 전송시점에 채널을 센싱함으로써 센싱시점과 데이터 전송시점간의 차이로 인한 주 사용자와의 충돌가능성을 최소화할 수 있는 멀티채널 매체접근제어(MAC: Medium Access Control) 프로토콜을 제안하고 시뮬레이션을 통해 그 성능을 분석하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.