• 제목/요약/키워드: Pytorch

검색결과 13건 처리시간 0.027초

이미지 분류를 위한 딥러닝 기반 CNN모델 전이 학습 비교 분석 (CNN model transition learning comparative analysis based on deep learning for image classification)

  • 이동준;전승제;이동휘
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.370-373
    • /
    • 2022
  • 최근 Tensorflow나 Pytorch, Keras 같은 여러가지의 딥러닝 프레임워크 모델들이 나왔다. 또한 이미지 인식에 Tensorflow, Pytorch, Keras 같은 프레임 워크를 이용하여 CNN(Convolutional Neural Network)을 적용시켜 이미지 분류에서의 최적화 모델을 주로 이용한다. 본 논문에서는 딥러닝 이미지 인식분야에서 가장 많이 사용하고 있는 파이토치와 텐서플로우의 프레임 워크를 CNN모델에 학습을 시킨 결과를 토대로 두 프레임 워크를 비교 분석하여 이미지 분석할 때 최적화 된 프레임워크를 도출하였다.

  • PDF

Pytorch를 통한 멸종위기종 철새 이미지 분류 AI 시스템 (Image Classification of Endangered Species of Migratory Birds Using Pytorch)

  • 심채영;이준우;추민정;황다희;문유진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.319-320
    • /
    • 2023
  • 본 논문에서는 합성곱 신경망이 적용된 네트워크를 활용해 전이 학습의 과정을 거친 멸종위기종 철새들의 이미지를 분류하는 시스템의 설계과정과 결과를 제시한다. 연구 방법으로 한국 영랑호를 찾아오는 멸종위기종, 천연기념물인 철새들의 이미지를 학습시켜 "가창오리", "노랑부리백로", "물총새" 이 세 종의 철새들을 매우 정확하게 분류하는 것을 확인하였다. 데이터 예비학습과정에서 train data의 개수를 40개로 진행했을때 약 92%의 정확도를 확인 후, train data의 이미지 개수를 50장으로 늘려 더 높은 정확도를 얻을 수 있었다. 이 시스템은 한국을 방문하는 멸종위기종 철새들을 무분별하게 포획하지 않도록 철새 이미지 분류시 활용 가능하다고 사료된다.

  • PDF

다양한 컴퓨팅 환경에서 YOLOv7 모델의 추론 시간 복잡도 분석 (YOLOv7 Model Inference Time Complexity Analysis in Different Computing Environments)

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.7-11
    • /
    • 2022
  • Object detection technology is one of the main research topics in the field of computer vision and has established itself as an essential base technology for implementing various vision systems. Recent DNN (Deep Neural Networks)-based algorithms achieve much higher recognition accuracy than traditional algorithms. However, it is well-known that the DNN model inference operation requires a relatively high computational power. In this paper, we analyze the inference time complexity of the state-of-the-art object detection architecture Yolov7 in various environments. Specifically, we compare and analyze the time complexity of four types of the Yolov7 model, YOLOv7-tiny, YOLOv7, YOLOv7-X, and YOLOv7-E6 when performing inference operations using CPU and GPU. Furthermore, we analyze the time complexity variation when inferring the same models using the Pytorch framework and the Onnxruntime engine.

Jetson 임베디드 플랫폼에서의 YOLOv7 추론 속도 개선에 관한 연구 (A Study on the Improvement of YOLOv7 Inference Speed in Jetson Embedded Platform)

  • 강보찬;유동영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.154-155
    • /
    • 2023
  • 오픈 소스인 YOLO(You Only Look Once) 객체 탐지 알고리즘이 공개된 이후, 산업 현장에서는 고성능 컴퓨터에서 벗어나 효율과 특수한 환경에 사용하기 위해 임베디드 시스템에 도입하고 있다. 그러나, NVIDIA의 Jetson nano의 경우, Pytorch의 YOLOv7 딥러닝 모델에 대한 추론이 진행되지 않는다. 따라서 제한적인 전력과 메모리, 연산능력 최적화 과정은 필수적이다. 본 논문은 NVIDIA의 임베디드 플랫폼 Jetson 계열의 Xavier NX, Orin AGX, Nano에서 딥러닝 모델을 적용하기 위한 최적화 과정과 플랫폼에서 다양한 크기의 YOLOv7의 PyTorch 모델들을 Tensor RT로 변환하여 FPS(Frames Per Second)를 측정 및 비교한다. 측정 결과를 통해, 각 임베디드 플랫폼에서 YOLOv7 모델의 추론은 Tensor RT는 Pytorch에서 약 4.1배 적은 FPS 변동성과 약 2.25배 정도의 FPS 속도향상을 보였다.

화자 겹침 검출 시스템의 프레임워크 전환 연구 (Framework Switching of Speaker Overlap Detection System)

  • 김회남;박지수;차신;손경아;윤영선;박전규
    • 한국소프트웨어감정평가학회 논문지
    • /
    • 제17권1호
    • /
    • pp.101-113
    • /
    • 2021
  • 본 논문에서는 화자 겹침 시스템을 소개하고 인공지능 분야에서 널리 사용되는 프레임워크에서 이미 구축된 시스템을 전환하는 과정을 고찰하고자 한다. 화자 겹침은 대화 과정에서 두 명 이상의 화자가 동시에 발성하는 것을 말하며, 사전에 화자 겹침을 탐지하여 음성인식이나 화자인식의 성능 저하를 예방할 수 있으므로 많은 연구가 진행되고 있다. 최근 인공지능을 이용한 다양한 응용 시스템의 활용도가 높아지면서 인공지능 프레임워크 (framework) 간의 전환이 요구되고 있다. 그러나 프레임워크 전환 시 각 프레임워크의 고유 특성에 의하여 성능 저하가 관찰되고 있으며 이는 프레임워크 전환을 어렵게 하고 있다. 본 논문에서는 케라스 (Keras) 기반 화자 겹침 시스템을 파이토치 (pytorch) 시스템으로 전환하는 과정을 기술하고 고려해야 할 구성 요소들을 정리하였다. 프레임워크 전환 결과 기존 케라스 기반 화자 겹침 시스템보다 파이토치로 전환된 시스템에서 더 좋은 성능을 보여 체계적인 프레임워크 전환의 기본 연구로서 가치를 지닌다고 할 수 있다.

GAN 알고리즘을 이용하여 증식된 화재 영상의 적합성 평가 (Evaluation of Suitability of Fire Images augmented using GAN Algorithm)

  • 손성혁;최동규;장시웅
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 추계학술대회
    • /
    • pp.77-79
    • /
    • 2022
  • 형태가 가변적인 영상을 감지하기 위해서는 많은 양의 관련 영상이 필요하다. 따라서 본 논문에서는 형태가 가변적인 영상 중 화재 영상을 GAN 알고리즘을 통해 증식시키고 이 영상을 이용해 AI 학습을 수행할 때의 검출률을 비교하여 GAN 알고리즘을 사용하여 증식된 이미지가 학습 데이터에 적합한지 분석하였다.

  • PDF

3D 탑복원을 위한 화질 개선에 관한 연구 (A Study on Image Quality Improvement for 3D Pagoda Restoration)

  • 김범준;이현우;김기협;김은지;김영진;이병권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.145-147
    • /
    • 2022
  • 본 논문에서는 훼손되어 식별할 수 없는 탑 이미지를 비롯해 낮은 해상도의 탑 이미지를 개선하기 위해 우리는 탑 이미지의 화질 개선을 인공지능을 이용하여 빠르게 개선을 해 보고자 한다. 최근에 Generative Adversarial Networks(GANS) 알고리즘에서 SrGAN 알고리즘이 나오면서 이미지 생성, 이미지 복원, 해상도 변화 분야가 지속해서 발전하고 있다. 이에 본 연구에서는 다양한 GAN 알고리즘을 화질 개선에 적용해 보았다. 탑 이미지에 GAN 알고리즘 중 SrGan을 적용하였으며 실험한 결과 Srgan 알고리즘은 학습이 진행되었으며, 낮은 해상도의 탑 이미지가 높은 해상도, 초고해상도 이미지가 생성되는 것을 확인했다.

  • PDF

3D 탑 복셀화를 통한 형상화 인공지능 알고리즘에 대한 연구 (A study on artificial intelligence algorithm for imagery through 3D pagoda voxelization)

  • 김범준;이병권
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.323-324
    • /
    • 2023
  • 본 논문에서는 다양한 복원 인공지능 알고리즘 중 하나인 3차원 복원 기술은 실제로 존재하는 물체의 2차원적인 픽셀을 3차원의 형태로 구현하여 형상화한다. 정확한 3차원 정보 처리가 요구됨에 따라 포인트 클라우드로 표현되는 데이터를 통해 정확한 쿨체의 크기 정보나 좌표 정보를 표시할 수 있다. 데이터의 픽셀을 분석하여 3차원의 형태로 구현할 것을 정의하는 복셀화(Voxelization) 알고리즘 전처리 과정을 통해 3차원 복원 기술 3D-GAN 활용으로 3차원 형태 형상화를 하였다. 본 논문에서는 3차원 복원 알고리즘 통하여 2차원 포인트 클라우드를 분석해 3차원 형태로 복원하는 기술에 대한 설명한다.

  • PDF

Pig Image Learning for Improving Weight Measurement Accuracy

  • Jonghee Lee;Seonwoo Park;Gipou Nam;Jinwook Jang;Sungho Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권7호
    • /
    • pp.33-40
    • /
    • 2024
  • 가축의 생체중은 건강 및 사육 환경 관리에 중요한 정보이고 이를 통해 최적 사료량이나 출하 시기 등을 결정하게 된다. 일반적으로 가축의 무게를 측정할 때 체중계를 이용하지만, 체중계를 이용한 가축 무게를 측정하는데 상당한 인력과 시간이 필요하고 성장 단계별 측정이 어려워 사료급이량 조절 등의 효과적인 사육 방법이 적용되지 못하는 단점이 있다. 본 연구는 축산 양돈 분야에 영상 및 이미지 데이터를 수집, 분석, 학습, 예측 등을 통해 포유자돈, 이유자돈, 육성돈, 비육돈 구간별 체중 측정에 관한 연구와 함께 정확도를 높이고자 하였다. 이를 위해 파이토치(pytorch), YOLO(you only look once) 5 모델, 사이킷런(scikit learn) 라이브러리를 사용하여 학습시킨 결과, 실제치(actual)와 예측치(prediction) 그래프에서 RMSE(root mean square error) 0.4%와 MAPE(mean absolute percentage error) 0.2%로 유사한 흐름을 확인할 수 있다. 이는 양돈 분야의 포유자돈, 이유자돈, 육성돈, 비육돈 구간에서 활용할 수 있으며 다각도로 학습된 이미지 및 영상 데이터와 실제 측정된 체중 데이터를 바탕으로 지속적인 정확도 향상이 가능하고 향후 영상판독을 통해 돼지의 부유별 생산량에 대한 예측으로 효율적인 사육관리가 가능할 것으로 기대된다.

공개 딥러닝 라이브러리에 대한 보안 취약성 검증 (Security Vulnerability Verification for Open Deep Learning Libraries)

  • 정재한;손태식
    • 정보보호학회논문지
    • /
    • 제29권1호
    • /
    • pp.117-125
    • /
    • 2019
  • 최근 다양한 분야에서 활용중인 딥러닝은 적대적 공격 가능성의 발견으로 위험성이 제기되고 있다. 본 논문에서는 딥러닝의 이미지 분류 모델에서 악의적 공격자가 생성한 적대적 샘플에 의해 분류 정확도가 낮아짐을 실험적으로 검증하였다. 대표적인 이미지 샘플인 MNIST데이터 셋을 사용하였으며, 텐서플로우와 파이토치라이브러리를 사용하여 만든 오토인코더 분류 모델과 CNN(Convolution neural network)분류 모델에 적대적 샘플을 주입하여 탐지 정확도를 측정한다. 적대적 샘플은 MNIST테스트 데이터 셋을 JSMA(Jacobian-based Saliency Map Attack)방법으로 생성한 방법과 FGSM(Fast Gradient Sign Method)방식으로 변형하여 생성하였으며, 분류 모델에 주입하여 측정하였을 때 최소 21.82%에서 최대 39.08%만큼 탐지 정확도가 낮아짐을 검증하였다.