• Title/Summary/Keyword: Python Education Model

Search Result 34, Processing Time 0.024 seconds

Development of Python Instructional Model Using Robot for Elementary Students (초등학생을 위한 로봇 활용 파이썬 학습 모형 개발)

  • Park, DaeRyoon;Yoo, InHwan
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.3
    • /
    • pp.357-366
    • /
    • 2018
  • The Code Block Based Educational Programming Language(EPL) is the mainstream tool for software education for elementary students. However, Code Block Based EPL has limitations in scalability, even though there are many advantages as an introductory tool for software education. In this study, we searched the approach of SW education using Python, which is a text-based programming language actively used in real industrial field. We developed a learning program and model using Python and applied it to the sixth grade elementary school students for 10 hours. As a result, we found that the robot-based Python learning model had a significant effect on improving students' thinking skills and confirmed the applicability of text-based programming language to elementary school students.

Validity Analysis of Python Automatic Scoring Exercise-Problems using Machine Learning Models (머신러닝 모델을 이용한 파이썬 자동채점 연습문제의 타당성 분석)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.193-198
    • /
    • 2023
  • This paper analyzed the validity of exercise problems for each unit in Python programming education. Practice questions presented for each unit are presented through an online learning system, and each student uploads an answer code and is automatically graded. Data such as students' mid-term exam scores, final exam scores, and practice questions scores for each unit are collected through Python lecture that lasts for one semester. Through the collected data, it is possible to improve the exercise problems for each unit by analyzing the validity of the automatic scoring exercise problems. In this paper, Orange machine learning tool was used to analyze the validity of automatic scoring exercises. The data collected in the Python subject are analyzed and compared comprehensively by total, top, and bottom groups. From the prediction accuracy of the machine learning model that predicts the student's final grade from the Python unit-by-unit practice problem scores, the validity of the automatic scoring exercises for each unit was analyzed.

Design of Teaching Method for SW Education Based On Python and Team-Shared Mental Model (파이썬과 팀 공유정신모형을 활용한 SW교육 방법의 설계)

  • Lee, Hakkyung;Park, Phanwoo;Yoo, Inhwan
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • According to the Fourth Industrial Revolution, SW education is emphasized around the world to educate student with new abilities. Following to these global trends, SW education has become mandatory in Korea's 2015 revised curriculum. However, Korean elementary SW education is focused on the use of block-based programming languages. In addition, the point of view of selecting goals and organizing content of SW Education, the affective domain is ignored and focused only on the cognitive and psychomotor domains. So, this study explored method of SW education using the concept of Team-Shared Mental Model for develop of community capacity and Python, which is textual programming language gaining popularity recently. As a result of performing the post test t-test on two groups with similar Team-Shared Mental Model formation, we found that it was effective in forming a Team-Shared Mental Model of the group applying the SW teaching method suggested in the study.

A Study on Software Education Donation Model for the Social Care Class

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.239-246
    • /
    • 2019
  • In this paper, we propose an effective software education donation model for the social care class. The types of software education for elementary, middle, and high school for the social care class are in the order of after school classes, club activities, creative experiences, and regular classes. In elementary school students, it is effective to precede visual programming education based on block coding and to conduct curriculum convergence with SW and HW at the beginning, and high school students are carrying out text programming education like Python. Software education for social care class The contribution activity model can be classified into five types such as geographically difficult area, multicultural family areas, orphanage, reformatory, and basic livelihood security recipient. In addition, the survey results show that the students' interest in software education and their satisfaction are all very high at 96%. Effective software education for the social care class In the donation model, the lecturers consist of responsible professors, lecturers, and assistant instructors. Software training for the social care class is effective on a year-by-year basis, so that students can feel authenticity and trust. Software education contents focus on visual programming and physical computing education in elementary or middle school, and text programming and physical computing education in high school. It is necessary to construct a software education donor matching system that helps efficient management of software education donations by efficiently matching schools (consumers: elementary, middle, high school) and software education donors(suppliers).

Python-based Software Education Model for Non-Computer Majors (컴퓨터 비전공자를 위한 파이썬 기반 소프트웨어 교육 모델)

  • Lee, Youngseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.3
    • /
    • pp.73-78
    • /
    • 2018
  • Modern society has evolved to such an extent that computing technology has become an integral part of various fields, creating new and superior value to society. Education on computer literacy, including the ability to design and build software, is now becoming a universal education that must be acquired by everyone, regardless of the field of study. Many universities are imparting software education to students to improve their problem-solving ability, including to students who are not majoring in computers. However, software education contains courses that are meant for computer majors and many students encounter difficulty in learning the grammar of programming language. To solve this problem, this paper analyzes the research outcomes of the existing software education model and proposes a Python-based software education model for students who are not majoring in computer science. Along with a Python-based software education model, this paper proposed a curriculum that can be applied during one semester, including learning procedures, and teaching strategies. This curriculum was applied to a liberal arts class and a meaningful result was derived. If the proposed software education model is applied, the students will be interested in the computer literacy class and improve their computational thinking and problem-solving ability.

Development of computational thinking based Coding_Projects using the ARCS model (ARCS 모형을 적용한 컴퓨팅사고력 기반 코딩 프로젝트 개발)

  • Nam, Choong Mo;Kim, Chong Woo
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.4
    • /
    • pp.355-362
    • /
    • 2019
  • Elementary students are studying software training to teach coding education using text-based languages such as Python. In general, these higher-level languages support learning activities in combination with a kits for physical computing or various programming languages, in contrast to block-coding programming languages. In this study, we conducted a coding project based on computational thinking using the ARCS model to overcome the difficulties of text-based language. The results of the experiment show that students are generally confident and interested in programming. Especially, the understanding of repetition, function, and object was high in the change of computational thinking power, so this trend is believed to be due to the use of text-based languages and the Python module.

User Information Collection of Weibo Network Public Opinion under Python

  • Changhua Liu;Yanlin Han
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.310-322
    • /
    • 2023
  • Although the network environment is gradually improving, the virtual nature of the network is still the same fact, which has brought a great influence on the supervision of Weibo network public opinion dissemination. In order to reduce this influence, the user information of Weibo network public opinion dissemination is studied by using Python technology. Specifically, the 2019 "Ethiopian air crash" event was taken as the research subject, the relevant data were collected by using Python technology, and the data from March 10, 2019 to June 20, 2019 were constructed by using the implicit Dirichlet distribution topic model and the naive Bayes classifier. The Weibo network public opinion user identity graph model under the "Ethiopian air crash" on June 20 found that the public opinion users of ordinary netizens accounted for the highest proportion and were easily influenced by media public opinion users. This influence is not limited to ordinary netizens. Public opinion users have an influence on other types of public opinion users. That is to say, in the network public opinion space of the "Ethiopian air crash," media public opinion users play an important role in the dissemination of network public opinion information. This research can lay a foundation for the classification and identification of user identity information types under different public opinion life cycles. Future research can start from the supervision of public opinion and the type of user identity to improve the scientific management and control of user information dissemination through Weibo network public opinion.

Python Basic Programming Curriculum for Non-majors and Development Analysis of Evaluation Problems (비전공자를 위한 파이썬 기초 프로그래밍 커리큘럼과 평가문제 개발분석)

  • Hur, Kyeong
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.75-83
    • /
    • 2022
  • Most of the courses that teach the Python programming language are liberal arts courses that all students in general universities must complete. Through this, non-major students who have learned the basic programming process based on computational thinking are strengthening their convergence capabilities to apply SW in various major fields. In the previous research results, various evaluation methods for understanding the concept of computational thinking and writing code were suggested. However, there are no examples of evaluation problems, so it is difficult to apply them in actual course operation. Accordingly, in this paper, a Python basic programming curriculum that can be applied as a liberal arts subject for non-majors is proposed according to the ADDIE model. In addition, the case of evaluation problems for each Python element according to the proposed detailed curriculum was divided into 1st and 2nd phases and suggested. Finally, the validity of the proposed evaluation problem was analyzed based on the evaluation scores of non-major students calculated in the course to which this evaluation problem case was applied. It was confirmed that the proposed evaluation problem case was applied as a real-time online non-face-to-face evaluation method to effectively evaluate the programming competency of non-major students.

Teaching and Learning of University Calculus with Python-based Coding Education (파이썬(Python) 기반의 코딩교육을 적용한 대학 미적분학의 교수·학습)

  • Park, Kyung-Eun;Lee, Sang-Gu;Ham, Yoonmee;Lee, Jae Hwa
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.163-180
    • /
    • 2019
  • This study introduces a development of calculus contents which makes to understand the main concepts of calculus in a short period of time and to enhance problem solving and computational thinking for complex problems encountered in the real world for college freshmen with diverse backgrounds. As a concrete measure, we developed 'Teaching and Learning' contents and Python-based code for Calculus I and II which was used in actual classroom. In other words, the entire process of teaching and learning, action plan, and evaluation method for calculus class with Python based coding are reported and shared. In anytime and anywhere, our students were able to freely practice and effectively exercise calculus problems. By using the given code, students could gain meaningful understanding of calculus contents and were able to expand their computational thinking skills. In addition, we share a way that it motivated student activities, and evaluated students fairly based on data which they generated, but still instructor's work load is less than before. Therefore, it can be a teaching and learning model for college mathematics which shows a possibility to cover calculus concepts and computational thinking at once in a innovative way for the 21st century.

Physical Computing Learning Model for Information and Communication Education (정보통신기술 교육을 위한 피지컬 컴퓨팅 학습모델)

  • Lee, Yong-Jin
    • Journal of Internet of Things and Convergence
    • /
    • v.2 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • This paper aims to present the physical computing learning model applicable in teaching the information and communication technology for technology and engineering education. This model is based on the physical computing and deals with the information creation and information transfer in one framework, thus provides students with the total understanding and practice opportunity about information and communication. The proposed learning models are classified into the client-server based model and the web based model. In the implemented learning model, the acquirement and control of information is performed by sketch on Arduino and the communication of information is performed by the Python socket on Raspberry Pi well known as an education platform. Our proposed learning model can be used for teaching students to understand the concept of Internet of Things (IoT), which provides us with world wide control and communication of information.