• Title/Summary/Keyword: Pythium sp.

Search Result 54, Processing Time 0.03 seconds

Relationship between Plant Protection Rate and Coefficient of Variation of Microbial Products for Ginseng Cultivation (인삼재배용 미생물 제품의 식물보호율과 변이계수와의 관계)

  • Lee, Byung-Dae;Park, Hoon
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.127-131
    • /
    • 2009
  • The plant protection rate of the marketed microbial products for ginseng cultivation was investigated against Rhizoctoina solani and Pythium sp. in a seedling pot experiment. A significant difference was found among the mean plant protection rates (Pm) of the microbial products, including Tolclofos-methyl (Rhizolex). The best microbial product, C-ISR2, showed a 33% and 33.6% net Pm (total Pm-control Pm) in the two tests against Rhizoctonia solani. In one test with a 58.6% control plot Pm, the total pm was 91.6%, indicating that plant protection can be done only with a microbial product in a well-conditioned field. The net Pm of C-ISR2 against Pythium sp. was 26.4%. The net Pm of a microbial product against a pathogen seems to be fixed. A significant negative linear correlation was found between the Pm and the coefficient of variation (CV) of the protection rate in all the three experiments. This indicates that the protection processes of control, microbial products, and chemical pesticides are in the same system. Pm was only dependent on CV, probably due to each seedling's microenvironment. In the linear correlation equation between the Pm and the CV of the microbial products and the control plot, the intercept of the vertical axis will be the theoretical Pm when CV is zero.

Selection and Bacterialization into Rootzone of the Various Plant Growth Promoting Rhizobacteria in Peatmoss Compost on the Early Growth of Cucumber and Tomato Plug Seedlings (수종의 식물생장촉진 근권미생물의 분리 및 근권처리가 오이와 토마토 플러그묘의 초기생장에 미치는 영향)

  • 조자용;김광수;정순주
    • Korean Journal of Organic Agriculture
    • /
    • v.6 no.1
    • /
    • pp.151-160
    • /
    • 1997
  • Azospirillum sp., photosynthetic bacteria(Rhodopseudomonas sp.) and Pseudomonas sp. were separated and screened from soil and soilless culture, and identificated. The antifungal activities against root-infected pathogens and plant growth promoting effects of the cultured solution of the starins(5.0$\times$105 cells/$m\ell$) in the peatmoss compost on the early growth of cucumber and tomato seedling were investigated. Azospirillum sp. and Pseudomonas sp. showed a antifungal activities against Fusarium sp., Pythium sp. and Rhizoctonia sp in thed ranges of 51.0% to 72.0% on potato dextrose agar medium, however photosynthetic bacteria had not antifungal activities. When cultured solution of Azospirillum sp., photosynthetic bacterial and Pseudomonas sp. were bacterialized by mixing with peatmoss compost, early growth of cucumber and tomato in terms of plant height, number of leaves, leaf area, root length, fresh anf dry weight of leaf, stem and root were promoted, especially photosynthetic bacteria had a the best plant growth promting activities.

  • PDF

Control of Ginseng Damping-off by Streptomyces sp. A3265 (방선균 A3265 균주에 의한 인삼 잘록병의 방제)

  • Woo, E-Eum;Lee, Gang-Seon;Lee, In-Kyoung;Choi, Jae-Eul;Yun, Bong-Sik
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.193-195
    • /
    • 2016
  • Korean ginseng (Panax ginseng) possesses various biological and pharmacological properties. Damping-off is a critical disease on ginseng seedlings, which is caused by the fungal pathogens Rhizoctonia solani and Pythium sp.. This disease is generally controlled by the application of fungicides, but also biological control is an efficient and environmentally friendly way to prevent ginseng damping-off. In a previous study, we screened soil-borne bacteria with potential applications as biological control agents for ginseng damping-off and selected the bacterial strain Streptomyces sp. A3265, producing antifungal substances guanidylfungin and methylguanidylfungin. In this study, we investigated control efficacy of Streptomyces sp. A3265 against ginseng damping-off in the field. As a result, the incidence of damping-off was significantly reduced when soaking ginseng seeds in the culture broth of Streptomyces sp. A3265.

Screening of an antagonist of Pythium ultimum : Purification and characterization of an antibiotic effective to the oomycetes fungi

  • Yang, Jin-Ok;Park, Sang-Ho;Park, Dong-Jin;Kim, Chang-Jin
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.135-135
    • /
    • 1998
  • To find an antagonist of Pythium ultimum, the causal agent of damping-off, numerous actinomycete strains were screened for in vitro inhibiting mycelial growth of the target fungus and producing bioactive metabolites. A strain identified as Streptomyces sp. G60655 was isolated and used for further antagonistic efficacy. The degree of antagonism between the fungus and G60655 was affected by the medium used. Furthermore, the preinoculation of the antagonist was found to be necessary to exhibit the maximum efficacy of antagonsim against the fungus. From the culture broth, a bioactive metabolite was detected and purified by solvent extraction, silica gel chromatography and preparative HPLC. The FAB-MS spectrum of the active compound showed a molecular ion peak at m/z 1101 (M + H)$\^$+/, suggesting the molecular weight of 1100. The UV absorptions at 242 and 323 nm indicated the presence of aromatic functions. The structure of this compound was identified as echinomycin, a depsipeptide antibiotic by spectroscopic studies including various NMR measurements. Echinomycin was inactive against several soil born fungi, but inhibited the mycelial growth of P. ultimum and its related oomycetous fungi.

  • PDF

Control of Powdery Mildew by Garlic Oil in Cucumber and Tomato (마늘오일을 이용한 오이와 토마토 흰가루병 방제)

  • Seo Sang-Tae;Lee Jung-Sup;Park Jong-Han;Han Kyoung-Suk;Jang Han-Ik
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.51-54
    • /
    • 2006
  • The effectiveness of four plant oils (garlic, ginger, cinnamon and lemongrass) against a range of plant pathogenic organisms was tested in vitro. Of the four oils, two oils (garlic and cinnamon) showed relatively good antimicrobial activities. Activity of garlic oil was shown against the plant pathogenic bacteria Agrobacterium tumefaciens, Ewinia carotovora, Ralstonia solanacearum, Xanthomonas campestris, and the fungi Phytophthora infestans, Fusarium oxysporum, Collectotricum sp., whereas Acidovorax avenae and Pythium sp. showed the resistance towards garlic oil. Results from the planta bioassays under greenhouse conditions indicated that garlic oil significantly reduced the cucumber powdery mildew (Sphaerotheca fusca) and tomato powdery mildew (Erysiphe cichoracearum) showing control value 70.0-74.6% and 71.2%, respectively.

Effect of Organic Amendments on Efficacy of Biological Control of Seedling Damping-off of Cucumber with Several Microbial Products (유기물 첨가가 오이 모잘록병에 대한 미생물 제제의 생물학적 방제 효과 증진에 미치는 영향)

  • Lee, Jong-Moon;Do, Eun-Soo;Baik, Su-Bong;Chun, Se-Chul
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Several microbial biocontrol products (Greenbiotech Co., Paju, Korea), Green-all T (Trichoderma harzianum), Green-all S(Bacillus sp.) and Green-all G (Streptomyces sp.) were supplemented with organic amendments such as sawdusts and rice hulls to study on efficacy of biological control of seeding damping-off of cucumber caused by Pythium ultimum. Sawdusts amended into potato dextrose agar alone could inhibit in vitro mycelial growth of P. ultimum. All there microbial products of Green-all T, Green-all G and Green-all S significantly reduced seeding damping-off (LSD, P=0.05). However, several amendments such as sawdusts and rice hulls into Green-all T and Green-all S products did not increase efficacy of biological control compared to non-amended treatment. In contrast, supplements of aminodoctor containing several amino acids (Greenbiotech Co., Korea) into Green-all G product significantly increased efficacy of biological control of seeding damping-off, resulting in from 42% to 2% disease incidence in relation to seedling emergence (LSD, P=0.05). Also, amendment of sawdusts into Tricoderma product significantly increased efficacy of biological control as disease index of 5.0 compared to non-amended control of 56.0 in Green-all T product alone. This indicates that organic amendments could increase efficacy of biological control of cucumber seedling damping-off.

Antifungal Activity of Lichen-Forming Fungi Isolated from Korean and Chinese Lichen Species Against Plant Pathogenic Fungi

  • Oh, Soon-Ok;Jeon, Hae-Sook;Lim, Kwang-Mi;Koh, Young-Jin;Hur, Jae-Seoun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.381-385
    • /
    • 2006
  • Antifungal activity of Korean and Chinese lichen-forming fungi(LFF) was evaluated against plant pathogenic fungi of Botryosphaeria dothidea, Botrytis cinerea, Diaporthe actinidiae, Pestalotiopsis longiseta, Pythium sp., Rhizoctonia solani, and Sclerotium cepivorum. The LFF were isolated from Cladonia scabriuscula, Melanelia sp., Nephromopsis asahinae, Nephromopsis pallescens, Parmelia laevior, Pertusaria sp., Ramalina conduplicans, Ramalina sinensis, Ramalina sp., Umbilicaria proboscidea and Vulpicida sp. with discharged spore method. The isolates were deposited in the herbarium of Korean Lichen Research Institute(KoLRI) in Sunchon National University. The LFF of Melanelia sp., P. laevior, Pertusaria sp., R. conduplican and Ramalina sp. exhibited strong antifungal activity against all of the pathogenic fungi examined. Among them, LFF of P. laevior showed more than 90% of inhibition in fungal hyphae growth, compared with control. The results imply that LFF can be served as a promising bioresource to develop novel biofungicides. Mass cultivation of the LFF is now under progress in laboratory conditions for chemical identification of antifungal substances.

Potential of the Volatile-Producing Fungus Nodulisporium sp. CF016 for the Control of Postharvest Diseases of Apple

  • Park, Myung-Soo;Ahn, Ji-Ye;Choi, Gyung-Ja;Choi, Yong-Ho;Jang, Kyoung-Soo;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • In vitro and in vivo mycofumigation effects of the volatileproducing fungus Nodulisporium sp. CF016 isolated from stem of Cinnamomum loureirii and the role of its volatile compounds were investigated against phytopathogenic fungi. The volatile compounds produced by Nodulisporium sp. CF016 inhibited and killed a wide range of plant and storage pathogens including to Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, Colletotrichum coccodes, Magnaporthe oryzae, Alternaria panax, Botrytis cinerea and Penicillium expansum. Mycofumigation with wheat bran-rice hull cultures of Nodulisporium sp. CF016 showed in vivo antifungal activity against gray mold caused by B. cinerea and blue mold caused by P. expansum of apple. The most abundant volatile compound produced by Nodulisporium sp. CF016 was $\beta$-elemene followed by 1-methyl-1,4-cyclohexadiene, $\beta$-selinene and $\alpha$-selinene. Nodulisporium sp. CF016 could be an attractive mycofumigant in controlling postharvest diseases of various fruits including apple.

Antifungal Activity of Bacillus sp. GJ-1 Against Phytophthora capsici (Bacillus sp. GJ-1의 Phytophthora capsici에 대한 항진균활성)

  • Lee, Gun-Joo;Han, Joon-Hee;Shin, Jong-Hwan;Kim, Heung Tae;Kim, Kyoung Su
    • The Korean Journal of Mycology
    • /
    • v.41 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • Phytophthora capsici is one of major limiting factors in production of pepper and other important crops worldwide by causing foliage blight and rot on fruit and root. Increased demand for the replacement of fungicides has led to searching a promising strategy to control the fungal diseases. To meet eco-friendly agriculture practice, we isolated microorganisms and assessed their beneficial effects on plant health and disease control efficacy. A total of 360 bacterial strains were isolated from rhizosphere soil of healthy pepper plants, and categorized to 5 representative isolates based on colony morphology. Among the 5 bacterial strains (GJ-1, GJ-4, GJ-5, GJ-11, GJ-12), three bacterial strains (GJ-1, GJ-11, GJ-12) presented antifungal activity against P. capsici in an fungal inhibition assay. In phosphate solubilization and siderophore production, the strain GJ-1 was more effective than others. The strain GJ-1 was identified as Bacillus sp. using 16S rDNA analysis. Bacillus sp. GJ-1 was also found to be effective in inhibiting other plant pathogenic fungi, including Rhizoctonia solani, Pythium ultimum and Fusarium solani. Therefore, the Bacillus sp. GJ-1 can serve as a biological control agent against fungal plant pathogens.

Biocontrol of Cabbage Clubroot by the Organic Fertilizer Using Streptomyces sp. AC-3. (Streptomyces sp. AC-3을 이용한 배추 무사마귀병의 생물학적 방제)

  • 주길재;김영목;김정웅;김원찬;이인구;최용화;김진호
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.2
    • /
    • pp.172-178
    • /
    • 2004
  • This research is performed for a biological control of Chinese cabbage clubroot, we isolated an antagonistic bacterium AC-3 against Plasmodiophora sp., causal pathogens of cabbage clubroot. The isolated strain was identified as Streptomyces sp. by culture morphology, biochemical reactions, and homology research based on l6S rDNA sequences. Streptomyces sp. AC-3 produced chitinase (9.3 units/$m\ell$) in culture broth. So Plasmodiophora sp. mycelia changed abnonnal swelling, curling and branching mycelia by Streptomyces sp. AC-3 culture. In a field infected by Plasmodiophora sp., the treatment of a organic fertilizer added 2% Streptomyces sp. AC-3 microbial inoculant, it resulted in about 50% reducing the severity of cabbage clubroot significantly on cabbage plants compared with treated organic fertilizer plants. Additional disease such as sclerotinia rot, fusarium wilt and pythium rot were also significantly reduced by the treatment of the organic fertilizer added Streptomyces sp. AC-3 microbial inoculant.