DOI QR코드

DOI QR Code

Potential of the Volatile-Producing Fungus Nodulisporium sp. CF016 for the Control of Postharvest Diseases of Apple

  • Park, Myung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Ahn, Ji-Ye (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2010.07.30
  • Accepted : 2010.08.26
  • Published : 2010.09.01

Abstract

In vitro and in vivo mycofumigation effects of the volatileproducing fungus Nodulisporium sp. CF016 isolated from stem of Cinnamomum loureirii and the role of its volatile compounds were investigated against phytopathogenic fungi. The volatile compounds produced by Nodulisporium sp. CF016 inhibited and killed a wide range of plant and storage pathogens including to Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, Colletotrichum coccodes, Magnaporthe oryzae, Alternaria panax, Botrytis cinerea and Penicillium expansum. Mycofumigation with wheat bran-rice hull cultures of Nodulisporium sp. CF016 showed in vivo antifungal activity against gray mold caused by B. cinerea and blue mold caused by P. expansum of apple. The most abundant volatile compound produced by Nodulisporium sp. CF016 was $\beta$-elemene followed by 1-methyl-1,4-cyclohexadiene, $\beta$-selinene and $\alpha$-selinene. Nodulisporium sp. CF016 could be an attractive mycofumigant in controlling postharvest diseases of various fruits including apple.

Keywords

References

  1. Cakir, A., Kordali, S., Zengin, H., Izumi, S. and Hirata, T. 2003. Composition and antifungal activity of essential oils isolated from Hypericum hyssopifolium and Hypericum heterophyllum. Flavour Fragr. J. 19:62-68.
  2. Chun, J. 1995. Computer-assisted classification and identification of actinomycetes. Ph. D. thesis. University of Newcastle, Newcastle upon Tyne, UK.
  3. Dai, J., Krohn, K., Florke, U., Draeger, S., Schulz, B., Kiss-Szikszai, A., Antus, S., Kurtan, T. and van Ree, T. 2006. Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedre. Eur. J. Org. Chem. 15:3498-3506.
  4. Dennis, C. and Webster, J. 1971. Antagonstics properties of species groups of Trichoderma. Part II. Production of volatile antibiotics. Trans. Br. Mycol. Soc. 57:41-48. https://doi.org/10.1016/S0007-1536(71)80078-5
  5. Douglas E. Raines, D. E., Robert, F. G., Claycomb, J. and Stevens, R. J. 2004. The N-methyl-D-aspartate receptor inhibitory potencies of aromatic inhaled drugs of abuse: evidence for modulation by $cation-{\pi}$ interactions. J. Pharmacol. Exp. Ther. 311:14-21. https://doi.org/10.1124/jpet.104.069930
  6. Droby, S., Wisniewski, M., Macarisin, D. and Wilson, C. 2009. Twenty years of postharvest biocontrol research: Is it time for a new paradigm? Postharvest Biol. Technol. 52:137-145. https://doi.org/10.1016/j.postharvbio.2008.11.009
  7. Eckert. J. W. and Ogawa, J. M. 1988. The chemical control of postharvest disease: deciduous fruits, berries, vegetables and root/tuber crops. Annu. Rev. Phytopathol. 26:433-469. https://doi.org/10.1146/annurev.py.26.090188.002245
  8. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.2307/2408678
  9. Hong, E.-J., Na, K.-J., Choi, I.-G., Choi, K.-C. and Jeung, E.-B. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 27:863-866. https://doi.org/10.1248/bpb.27.863
  10. Janisiewicz, W. J. and Korsten, L. 2002. Biological control of postharvest diseases of fruits. Annu. Rev. Phytopathol. 40:411-441. https://doi.org/10.1146/annurev.phyto.40.120401.130158
  11. Jones, A. L. and Aldwinckle, H. S. 1991. Compendium of apple and pear diseases. The American Phytopathological Society, St. Paul, MN. USA.
  12. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequence. J. Mol. Evol. 16:111-120. https://doi.org/10.1007/BF01731581
  13. Kordali, S., Cakir, A., Mavi, A., Kilic, H. and Yildirim, A. 2005. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species. J. Agric. Food Chem. 53:1408-1416. https://doi.org/10.1021/jf048429n
  14. Lee, S. O., Kim, H. Y., Choi, G. J., Lee, H. B., Jang, K. S., Choi, Y. H. and Kim, J.-C. 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J. Appl. Microbiol. 106:1213-1219. https://doi.org/10.1111/j.1365-2672.2008.04087.x
  15. Li, X., Wang, G., Zhao, J., Ding, H., Cunningham, C., Chen, F., Flynn, D. C., Reed, E. and Li, Q. Q. 2005. Antiproliferative effect of beta-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase. Cell Mol. Life Sc. 62:894-904. https://doi.org/10.1007/s00018-005-5027-1
  16. Malele, R. S., Mutayabarwa, C. K., Mwangi, J. W., Thoithi, G. N. and Lopez, A. G. 2003. Essential oil of Hyptis suaveolens (L.) Poit. from Tanzania: Composition and antifungal activity. J. Essential Oil Res. 15:438-440. https://doi.org/10.1080/10412905.2003.9698633
  17. Ostlind, D. A., Felcetto T., Misura A., Ondeyka, J., Smith, S., Goetz, M., Shoop W. and Mickle, W. 1997. Discovery of a novel indole diterpene using first instars of Lucilia sericata. J. Med. Veterin. Entomol. 11:407-408. https://doi.org/10.1111/j.1365-2915.1997.tb00431.x
  18. Raines, D. E., Gioia, F., Claycomb, R. J. and Stevens, R. J. 2004. The N-methyl-D-aspartate receptor inhibitory potencies of aromatic inhaled drugs of abuse: evidence for modulation by $cation-{\pi}$ interactions. J. Pharmacol. Exp. Ther. 311:14-21. https://doi.org/10.1124/jpet.104.069930
  19. Park, M. S., Seo, G. S., Bae, K. S. and Yu, S. H. 2005. Characterization of Trichoderma spp. associated with green mold of oyster mushroom by PCR-RFLP and sequence analysis of ITS regions of rDNA. Plant Pathol. J. 21:229-236. https://doi.org/10.5423/PPJ.2005.21.3.229
  20. Suto, M., Takebayashi, M., Saito, K., Tanaka, M., Yokota, A. and Tomita, F. 2002. Endophytes as producers of xylanase. J. Biosci. Bioeng. 93:88-90. https://doi.org/10.1016/S1389-1723(02)80059-7
  21. Stinson, A. M., Zidack, N. K., Strobel, G. A., Jacobsen, B. J., 2003a. Mycofumigation Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis. 87:1349-1354. https://doi.org/10.1094/PDIS.2003.87.11.1349
  22. Stinson, A. M., Ezra, D., Hess, W. M., Sears, J. and Strobel, G. 2003b. An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci. 165:913-922. https://doi.org/10.1016/S0168-9452(03)00299-1
  23. Strobel, G. A., Dirksie, J., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from a novel endophytic fungus. Microbiol. 147:2943-2950. https://doi.org/10.1099/00221287-147-11-2943
  24. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin F. and Higgins, D. G. 1997. The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882.
  25. Wang, G., Li, X., Huang, F., Zhao, J., Ding, H., Cunnungham, C., Coad, J.E., Flynn, D. C., Reed, E. and Li, Q. Q. 2005. Antitumor effect of beta-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death. Cell Mol. Life Sci. 62:881-893. https://doi.org/10.1007/s00018-005-5017-3
  26. Whalley A. J. S. 1996. The Xylariaceous way of life. Mycol. Res. 100:897-922. https://doi.org/10.1016/S0953-7562(96)80042-6
  27. Wilson, C. L. and Wisniewski, M. E. 1989. Biological control of postharvest diseases of fruits and vegetables an emerging technology. Annu. Rev. Phytopathol. 27:425-441. https://doi.org/10.1146/annurev.py.27.090189.002233
  28. Wilson, C. L. and Wisniewski, M. E. 1994. Biological control of postharvest diseases: Theory and practice. CRC press, Fl, USA.
  29. Yao, Y. Q., Ding, X., Jia, Y. C., Hunag, C. X., Wang, Y. Z. and Xu, Y.H. 2008. Anti-tumor effect of beta-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett. 264:127-134. https://doi.org/10.1016/j.canlet.2008.01.049
  30. Zhou, T., Chu, C., Liu, W. and Schaneider, K. 2001. Postharvest control of blue mold and gray mold on apples using isolates of Pseudomonas syringae. Can. J. Plant Pathol. 23:246-252. https://doi.org/10.1080/07060660109506937

Cited by

  1. Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum vol.71, pp.2, 2016, https://doi.org/10.1007/s00248-015-0679-3
  2. Phytotoxic and antimicrobial activity of volatile and semi-volatile organic compounds from the endophyteHypoxylon anthochroumstrain Blaci isolated fromBursera lancifolia(Burseraceae) vol.121, pp.2, 2016, https://doi.org/10.1111/jam.13174
  3. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta vol.5, pp.4, 2015, https://doi.org/10.3390/agriculture5040918
  4. Antimicrobial activity of volatile organic compounds and their effect on lipid peroxidation and electrolyte loss in Colletotrichum gloeosporioides and Colletotrichum acutatum mycelia vol.9, pp.23, 2015, https://doi.org/10.5897/AJMR2015.7425
  5. Chemical diversity of microbial volatiles and their potential for plant growth and productivity vol.6, 2015, https://doi.org/10.3389/fpls.2015.00151
  6. Biofumigation with the endophytic fungus Nodulisporium spp. CMU-UPE34 to control postharvest decay of citrus fruit vol.45, 2013, https://doi.org/10.1016/j.cropro.2012.11.015
  7. Evaluation ofMuscodor suthepensisstrain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused byPenicillium digitatum vol.96, pp.1, 2016, https://doi.org/10.1002/jsfa.7099