• Title/Summary/Keyword: Pyrotechnic Device

Search Result 37, Processing Time 0.03 seconds

A Pyrotechnic Mixture Composition and Design Verification of Bright Flash (파이로테크닉 고섬광 발생장치 조성설계 및 설계검증)

  • Kim, Hyung Jun;Choi, Sung Wook;Kwon, Mi Ra;Hwang, Jun Sik;Chang, Kwe Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.289-295
    • /
    • 2014
  • The composition of bright flash device is a pyrotechnic mixture consisting of metal powder, oxidizer and additives. A pyrotechnic mixture of bright flash device generates a bright flash through burning after being ignited by initiator. The function of bright flash is to distract or incapacitate electro optical sensor systems and enemy eyes temporally. This study is to develop composition of pyrotechnic mixture of bright flash and to analyze the test results by considering intensity and efficiency of light.

Modeling and Simulation of a Shape Memory Release Device (형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구)

  • Lee, Yeung-Jo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.3
    • /
    • pp.99-108
    • /
    • 2006
  • Aerospace applications use pyrotechnic devices with many different functions. Functional shock, safety, overall system cost issue, and availability of new technologies, however, question the continued use of these mechanisms on aerospace applications. Release device is an important example of a task usually executed by pyrotechnic mechanisms. Many aerospace applications like satellite solar panels deployment or weather balloon separation need a release device. Several incidents, where pyrotechnic mechanisms could be responsible for spacecraft failure, have been encouraging new designs for these devices. The Frangibolt is a non explosive device which comprises a commercially available bolt and a small collar made of shape memory alloy (SMA) that replace conventional explosive bolt systems. This paper presents the modeling and simulation of Frangiblot by the change of bolt size and notch geometry. This analysis may contribute to improve the Frangibolt design.

EMC Safety Margin Verification for GEO-KOMPSAT Pyrotechnic Systems

  • Koo, Ja-Chun
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • Pyrotechnic initiators provide a source of pyrotechnic energy used to initiate a variety of space mechanisms. Pyrotechnic systems build in electromagnetic environment that may lead to critical or catastrophic hazards. Special precautions are need to prevent a pulse large enough to trigger the initiator from appearing in the pyrotechnic firing circuits at any but the desired time. The EMC verification shall be shown by analysis or test that the pyrotechnic systems meets the requirements of inadvertent activation. The MIL-STD-1576 and two range safeties, AFSPC and CSG, require the safety margin for electromagnetic potential hazards to pyrotechnic systems to a level at least 20 dB below the maximum no-fire power of the EED. The PC23 is equivalent to NASA standard initiator and the 1EPWH100 squib is ESA standard initiator. This paper verifies the two safety margins for electromagnetic potential hazards. The first is verified by analyzing against a RF power. The second is verified by testing against a DC current. The EMC safety margin requirement against RF power has been demonstrated through the electric field coupling analysis in differential mode with 21 dB both PC23 and 1EPWH100, and in common mode with 58 dB for PC23 and 48 dB for 1EPWH100 against the maximum no-fire power of the EED. Also, the EMC safety margin requirement against DC current has been demonstrated through the electrical isolation test for the pyrotechnic firing circuits with greater than 20 dB below the maximum no-fire current of the EED.

The Study on Pyrovalve (화약작동식 밸브에 관한 연구)

  • Kang, Won-Kyu;Choi, Young-Gi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.3-6
    • /
    • 2007
  • In this study, we described the Pyrovalve used in the propulsion system. It is very important to ensure its reliablity of operation because Pyrovalve is a pyrotechnic device for controlling fuel and air line of propulsion system. so we focused on improving operational reliability through several analyses and tests.

  • PDF

ELECTRONIC SAFING OF A DIODE LASER ARM-FIRE DEVICE

  • Kenneth E. Willis;Suk Tae Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.171-175
    • /
    • 1995
  • Semiconductor diode lasers that can generate one watt or more of optical energy for tens of milliseconds (quasi continuous wave) are now readily available. Several researchers have demonstrated that this power level, when properly coupled, can reliably initiate pyrotechnic mixtures. This means that the initiator containing the pyrotechnic can be protected against inadvertent initiation from electromagnetic radiation or electrostatic discharge by a conducting Faraday cage surrounding the explosive. Only a small dielectric window penetrates the housing of the initiator, thereby eliminating the conductors necessitated by a bridgewire electroexplosive device. The diode laser itself, however, functions at a low voltage (typically 3 volts) and hence is susceptible to inadvertent function from power supply short circuits, electrostatic discharge or induced RF energy. The rocket motor arm-fire device de-scribed in this paper uses a diode laser, but protects it from unintentional function with a Radio Frequency Attenuating Coupler (RFAC).The RFAC, invented by ML Aviation, a UK company, transfers power into a Faraday cage via magnetic flux, thereby protecting the diode, its drive circuit and the pyrotechnic from all electromagnetic and electrostatic hazards. The first production application of a diode laser and RFAC device was by the Korean Agency for Defense Development.

  • PDF

Manufacture of ZPP Granule Using the LabRAM Mixer (LabRAM Mixer를 이용한 ZPP 입자 제조)

  • Jeong, Hyeheun;Kim, Junhyung;Ko, Seungwon;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.63-70
    • /
    • 2017
  • ZPP (Zirconium-Potassium Perchlorate) is type of primary charge initiators for PMD (Pyrotechnic Mechanical Device) system. The binder component dissolved in the solvent is precipitated to suspended particles in the granules. The LabRAM Mixer uses resonance phenomenon to transfer energy, unlike blade equipment that utilizes mechanical contact. In this study, the properties of the particles prepared by the LabRAM Mixer were evaluated with the changes of the conditions.

Aging of Solid Fuels Composed of Zr and ZrNi Part 2: Kinetics Extraction for Full Simulation (Zr과 ZrNi로 구성된 고체연료의 노화 연구 Part 2: 화학반응식 추출 및 성능모사)

  • Han, Byungheon;Park, Yoonsik;Gnanaprakash, K.;Yoo, Jaeyong;Yoh, Jai-ick
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.2
    • /
    • pp.14-27
    • /
    • 2020
  • Differential scanning calorimetry and numerical analysis were performed to estimate the performance degradation and ignition characteristics of the pyrotechnic device due to aging. The reaction kinetics extracted from the calorimetry are implemented into the numerical simulation of the igniter and the pyrotechnic delay, subjected to natural, thermal, and hygrothermal aging conditions. Also, combustion experiments are conducted to confirm that aging due to moisture is a major cause of performance failure of the pyrotechnic device as shown from the present numerical simulations.

A Design of Fire-Command Synchronous Satellite Pyrotechnic Circuit (점화 명령에 동조된 인공위성 파이로테크닉 회로 설계)

  • Koo, Ja Chun;Ra, Sung Woong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.5
    • /
    • pp.81-92
    • /
    • 2013
  • The satellite includes many release mechanisms such as solar array deployment, antenna deployment, cover to protect contamination in scientific equipment, pyro value of the propulsion subsytem, and bypass device in Li-Ion cell module. A drive the initiators is a critical to the successful mission because the initiators of release mechanism driving by the pyrotechnic circuit is operated in single short. The pyrotechnic circuit has to provide switching network for safety. A typical switching network has defect consisting of high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit is required some form of power conditioning to reduce the peak power demanded from the bus if the initiators are to be fired from the main bus. This paper design a pyrotechnic circuit synchronized to the fire-command to activate the fire switch to overcome use high current rating fire switch to handle switching transient current during fire the initiator. The pyrotechnic circuit provides a current limited widow pulse for fire current synchronized to the fire-command to insure that fire switch will only carry the current but never switch it. The current limited widow pulse for fire current can be possible to use low current rating and light mass switch in switching network. The current limit function in the pyrotechnic circuit reduces supply voltage to initiator and provides the effect of power conditioning function to reduce peak bus power. The pyrotechnic circuit to apply satellite development on geostationary orbit is verified the function by test in development model.

Numerical Analysis and Simplified Mathematical Modeling of Separation Mechanism for the Ball-type Separation Bolt (볼타입 분리볼트 분리 메커니즘의 수치해석 및 간략화 모델링)

  • Hwang, Dae-Hyun;Lee, Juho;Han, Jae-Hung;Lee, Yeungjo;Kim, Dongjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.3
    • /
    • pp.63-70
    • /
    • 2016
  • The pyrotechnic separation devices are widely used in space systems and guided weapons during the launching and operations, however, they generate intensive pyroshock and fragments that can cause critical damages or the malfunction of electric devices onboard. There have been proposed many types of alternative devices to avoid pyro-induced problems since 1960's. A ball-type separation bolt is the one of alternative Pyrotechnic Mechanical Devices (PMD). In this study, the detail separation behavior of the ball-type separation bolt is analyzed using ANSYS AUTODYN. A simplified one-dimensional mathematical model, consisting of a combustion model and 5-stages of differential equation of motions, is also established to effectively describe the entire separation process.

The Study on reducing Pyrovalve-debris (파이로밸브 debris 개선에 관한 연구)

  • Kang, Won-Kyu;Hyun, Hyung-Soo;Kim, Jin-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.570-573
    • /
    • 2011
  • In this study, we described the Pyrovalve used in the propulsion system. It is very important to reduce Pyrovalve-debris as far as possible because Pyrovalve is a pyrotechnic device for controlling fuel and air line of propulsion system. So we focused on redesigning to reduce debris through several analyses and tests.

  • PDF