Modeling and Simulation of a Shape Memory Release Device

형상기억합금을 이용한 분리장치의 모델 및 모사에 관한 연구

  • Published : 2006.09.30

Abstract

Aerospace applications use pyrotechnic devices with many different functions. Functional shock, safety, overall system cost issue, and availability of new technologies, however, question the continued use of these mechanisms on aerospace applications. Release device is an important example of a task usually executed by pyrotechnic mechanisms. Many aerospace applications like satellite solar panels deployment or weather balloon separation need a release device. Several incidents, where pyrotechnic mechanisms could be responsible for spacecraft failure, have been encouraging new designs for these devices. The Frangibolt is a non explosive device which comprises a commercially available bolt and a small collar made of shape memory alloy (SMA) that replace conventional explosive bolt systems. This paper presents the modeling and simulation of Frangiblot by the change of bolt size and notch geometry. This analysis may contribute to improve the Frangibolt design.

본 논문은 기존 파이로 부품인 폭발볼트의 기능을 그대로 유지하면서 분리시 발생되는 파편 및 충격파의 악 작용과 파편을 완벽히 제거할 수 있게 형상기억합금(Shape Memory Alloy)을 이용한 분리장치(Fangibolt) 모델의 설계 및 모사에 관한 연구이다. Frangibolt는 기존 폭발볼트에서 사용하는 분리화약을 사용하지 않고 스마트 소재인 형상기억합금의 온도에 따라 변화되는 미세조직에 따른 응력생성을 이용하여 파이로 장치를 분리시키는 Non Pyrotechnic 장치로써, 실제 Frangibolt노치부에 생성되는 응력의 분포 및 분리거동을 해석함으로써 Frangibolt 설계에 필요한 인자를 파악할 수 있었다. 또한 볼트 설계방법의 최적화를 제시함으로써 향후 다른 종류의 SMA을 이용한분리장치 설계 및 해석 모델에 기초자료를 제공할 수 있을 것이다.

Keywords

References

  1. Lucy, M., Hardy, R., Kist, E., Watson, J. and Wise, S., "Report on Alternative Devices to Pyrotechnics on Spacecraft", NASA 16-19, 1996
  2. Yeung Jo Lee, A Study of Interpretation of Separation Behavior in Gas Expansion Separation Bolt, Journal of KSPE, Vol. 9, No. 1, 2005, pp.27-34
  3. Busch, J.D., Purdy, W.E. and Johnson, A.D., "Development of a Non‐Explosive Release Device for Aerospace Applications", 26th Aerospace Mechanisms Symposium. 1992
  4. Borden, T., Shape Memory Alloys, Forming a Tight Fit, Mechanical Engineering, 1991, pp.66-72
  5. Tanaka, A., A Phenomenological Description on Thermo‐mechanical Behavior of Shape Memory Alloys, J. of Pressure Vessel Technology, Vol. 112, 1990, pp.58-163
  6. Sun, Q.P. and Hwang, K.C., Micromechanics Modeling for the Constitutive Behavior of Polycrystalline Shape Memory Alloys, J. of Mech. Phys. Solids Vol. 41, 1993, pp.19-33 https://doi.org/10.1016/0022-5096(93)90061-J
  7. Rogers, C.A., Intelligent Materials, Scientific American, September, 1995, pp.122-127
  8. Zhang, X.D., Rogers, C.A. and Liang, C., Modeling of Two‐way Shape memory Effect, ASME - Smart Structures and materials, AD.Vol. 24, 1991, pp.79-90
  9. Savi, M.A. and Braga, A.M.B., Chaotic Vibrations of an Oscillator with Shape Memory, J of Brazilian Society for Mechanical Sciences - RBCM, Vol. 15, 1993, pp.1-20
  10. Jackson, C.M., Wagner, H.J. and Wasilewski, R.J., 55‐Nitonal - The Alloy with Memory, Its Physical metallurgy, Properties, and Applications, NASA SP 5110, 1972
  11. Smithells, C.J., Metals Reference Book, 5th edition, Butterworths, London, 1978
  12. Pacheco, P.M.C.L. and Savi, M.A., Modeling and Simulation of a Shape Memory Release Device for Aerospace Applications, Rev. Eng. e Cienc. Aplic. Sao Paulo, 2000, pp.1-16