• 제목/요약/키워드: Pyroprocessing of spent fuel

검색결과 66건 처리시간 0.018초

사용후핵연료 파이로 처리공정 실증시설의 개념설계 연구 (A Conceptual Design Study for a Spent Fuel Pyroprocessing Facility of a Demonstration Scale)

  • 유재형;홍권표;이한수
    • 방사성폐기물학회지
    • /
    • 제6권3호
    • /
    • pp.233-244
    • /
    • 2008
  • 본 연구에서는 경수로 사용후핵연료로부터 핵연료 물질(예: 차세대형 원자로의 연료)로 재사용할 수 있는 우라늄과 초우라늄원소군(TRU)을 분리, 회수하기 위한 파이로 처리공정(pyroprocess) 시설의 개념설계연구를 수행하였다. 이 시설의 목적은 공학적 실증시험을 통하여 상용 규모의 확대(scale-up) 자료를 확보하는 것과 운전 경험을 쌓을 수 있도록 하자는 것이고 그 용량은 비교적 작은 공학적 규모인 20 kg HM/batch 로 설정하였다. 처리 대상 핵연료로는 경수로의 전형적인 핵연료 형태인 3.5 % 농축우라늄, 35,000 MWd/tU 그리고 5년 냉각시킨 경수로 사용후핵연료를 선택하였다. 본 개념설계연구에서 고려한 주요 항목은 차폐셀을 포함한 파이로 처리공정 시설의 배치, 공정 운전에 대비한 시설 안전 관리, 방사선 안전, 차폐셀 내 불활성 분위기 관리, 연료 물질의 계량 관리, TRU 제품의 핵임계 관리 등이다.

  • PDF

파이로공정 시설 개념설계를 위한 기준 사용후핵연료 선정 (Reference Spent Nuclear Fuel for Pyroprocessing Facility Design)

  • 조동건;윤석균;최희주;최종원;고원일
    • 방사성폐기물학회지
    • /
    • 제6권3호
    • /
    • pp.225-232
    • /
    • 2008
  • 제3차 전력수급기본계획에 근거하여 현재 운영중이거나 계획중인 원자력발전소에서 발생할 사용후핵연료의 양과 특성을 추정하였다. 본 연구에서 고려된 대상 특성은 핵연료집합체에 대한 제원, 핵연료봉 배열, 무게, $^{235}U$ 초기 농축도 및 방출연소도이다. 이들은 파이로공정 시설을 설계하는데 필수적인 것이다. 2077년말까지 가압경수로 사용후핵연료의 예상발생량은 약 23,000 tU이 될 것으로 보인다. $^{235}U$ 초기 농축도 4.5 wt.% 이하를 갖는 사용후핵연료의 비율은 전체 발생량의 약 95%를 차지할 것이며, 16$\times$16 배열을 갖는 핵연료집합체는 74%를 차지할 것 같다. 현재 사용후핵연료의 평균연소도는 45 GWd/tU인데 반해, 2010년대 중 후반 이후 발생할 사용후 핵연료의 평균연소도는 55 GWd/tU이 될 것 같다. 이상의 결과에 따라 파이로공정 시설의 설계를 위한 기준 사용후핵연료를 도출하였다. 예상 사용후핵연료는 21.4 cm $\times$ 21.4 cm의 단면적, 453 cm의 길이, 672 kg의 질량, 4.5 wt.%의 $^{235}U$ 초기 농축도 및 55 GWd/tU의 방출연소도를 갖는 16$\times$16 한국표준형연료가 타당할 것으로 판단된다.

  • PDF

Transfer characteristics of a lithium chloride-potassium chloride molten salt

  • Mullen, Eve;Harris, Ross;Graham, Dave;Rhodes, Chris;Hodgson, Zara
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1727-1732
    • /
    • 2017
  • Pyroprocessing is an alternative method of reprocessing spent fuel, usually involving the dissolving spent fuel in a molten salt media. The National Nuclear Laboratory designed, built, and commissioned a molten salt dynamics rig to investigate the transfer characteristics of molten lithium chloride-potassium chloride eutectic salt. The efficacy and flow characteristics of a high-temperature centrifugal pump and argon gas lift were obtained for pumping the molten salt at temperatures up to $500^{\circ}C$. The rig design proved suitable on an industrial scale and transfer methods appropriate for use in future molten salt systems. Corrosion within the rig was managed, and melting techniques were optimized to reduce stresses on the rig. The results obtained improve the understanding of molten salt transport dynamics, materials, and engineering design issues and support the industrialization of molten salts pyroprocessing.

WASTE CLASSIFICATION OF 17×17 KOFA SPENT FUEL ASSEMBLY HARDWARE

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Jong-Won;Choi, Heui-Joo
    • Nuclear Engineering and Technology
    • /
    • 제43권2호
    • /
    • pp.149-158
    • /
    • 2011
  • Metal waste generated from the pyroprocessing of 10 MtU of spent fuel was classified by comparing the specific activity of a relevant radionuclide with the limit value of the specific activity specified in the Korean acceptance criteria for a lowand intermediate-level waste repository. A Korean Optimized Fuel Assembly design with a 17${\times}$17 array, an initial enrichment of 4.5 weight-percent, discharge burn-up of 55 GWD/MtU, and a 10-year cooling time was considered. Initially, the mass and volume of each structural component of the assembly were calculated in detail, and a source term analysis was subsequently performed using ORIGEN-S for these components. An activation cross-section library generated by the KENO-VI/ORIGEN-S module was utilized for top-end and bottom-end pieces. As a result, an Inconel grid plate, a SUS plenum spring, a SUS guide tube subpart, SUS top-end and bottom-end pieces, and an Inconel top-end leaf spring were determined to be unacceptable for the Gyeongju low- and intermediate-level waste repository, as these waste products exceeded the acceptance criteria. In contrast, a Zircaloy grid plate and guide tube can be placed in the Gyeongju repository. Non-contaminated Zircaloy cladding occupying 76% of the metal waste was found to have a lower level of specific activity than the limit value. However, Zircaloy cladding contaminated by fission products and actinides during the decladding process of pyroprocessing was revealed to have 52 and 2 times higher specific activity levels than the limit values for alpha and $^{90}Sr$, respectively. Finally, it was found that 88.7% of the metal waste from the 17${\times}$17 Korean Optimized Fuel Assembly design should be disposed of in a deep geological repository. Therefore, it can be summarized that separation technology with a higher decontamination factor for transuranics and strontium should be developed for the efficient management of metal waste resulting from pyroprocessing.

RECYCLING OPTION SEARCH FOR A 600-MWE SODIUM-COOLED TRANSMUTATION FAST REACTOR

  • LEE, YONG KYO;KIM, MYUNG HYUN
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.47-58
    • /
    • 2015
  • Four recycling scenarios involving pyroprocessing of spent fuel (SF) have been investigated for a 600-MWe transmutation sodium-cooled fast reactor (SFR), KALIMER. Performance evaluation was done with code system REBUS connected with TRANSX and TWODANT. Scenario Number 1 is the pyroprocessing of Canada deuterium uranium (CANDU) SF. Because the recycling of CANDU SF does not have any safety problems, the CANDU-Pyro-SFR system will be possible if the pyroprocessing capacity is large enough. Scenario Number 2 is a feasibility test of feed SF from a pressurized water reactor PWR. Thefsensitivity of cooling time before prior to pyro-processing was studied. As the cooling time sensitivity of cooling time before prior to pyro-processing was studied. As the cooling time increases, excess reactivity at the beginning of the equilibrium cycle (BOEC) decreases, thereby creating advantageous reactivity control and improving the transmutation performance of minor actinides. Scenario Number 3 is a case study for various levels of recovery factors of transuranic isotopes (TRUs). If long-lived fission products can be separated during pyroprocessing, the waste that is not recovered is classified as low- and intermediate-level waste, and it is sufficient to be disposed of in an underground site due to very low-heat-generation rate when the waste cooling time becomes >300 years at a TRU recovery factor of 99.9%. Scenario Number 4 is a case study for the recovery factor of rare earth (RE) isotopes. The RE isotope recovery factor should be lowered to ${\leq}20%$ in order to make sodium void reactivity less than <7$, which is the design limit of a metal fuel.

Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

  • Kim, Sung-Wook;Kang, Hyun Woo;Jeon, Min Ku;Lee, Sang-Kwon;Choi, Eun-Young;Park, Wooshin;Hong, Sun-Seok;Oh, Seung-Chul;Hur, Jin-Mok
    • Nuclear Engineering and Technology
    • /
    • 제48권4호
    • /
    • pp.997-1001
    • /
    • 2016
  • Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive $La_{0.33}Sr_{0.67}MnO_3$ in $LiCl-Li_2O$ molten salt at $650^{\circ}C$ was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the $La_{0.33}Sr_{0.67}MnO_3$ anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

Thermodynamic Study of Sequential Chlorination for Spent Fuel Partitioning

  • Jinmok Hur;Yung-Zun Cho;Chang Hwa Lee
    • 방사성폐기물학회지
    • /
    • 제21권3호
    • /
    • pp.397-410
    • /
    • 2023
  • This study examined the efficacy of various chlorinating agents in partitioning light water reactor spent fuel, with the aim of optimizing the chlorination process. Through thermodynamic equilibrium calculations, we assessed the outcomes of employing MgCl2, NH4Cl, and Cl2 as chlorinating agents. A comparison was drawn between using a single agent and a sequential approach involving all three agents (MgCl2, NH4Cl, and Cl2). Following heat treatment, the utilization of MgCl2 as the sole chlorinating agent resulted in a moderate separation. Specifically, this method yielded a solid separation with 96.9% mass retention, 31.7% radioactivity, and 44.2% decay heat, relative to the initial spent fuel. In contrast, the sequential application of the chlorinating agents following heat treatment led to a final solid separation characterized by 93.1% mass retention, 5.1% radioactivity, and 15.4% decay heat, relative to the original spent fuel. The findings underscore the potential effectiveness of a sequential chlorination strategy for partitioning spent fuel. This approach holds promise as a standalone technique or as a complementary process alongside other partitioning processes such as pyroprocessing. Overall, our findings contribute to the advancement of spent fuel management strategies.

DEVELOPMENT OF ELECTROREFINER WASTE SALT DISPOSAL PROCESS FOR THE EBR- II SPENT FUEL TREATMENT PROJECT

  • Simpson, Michael F.;Sachdev, Prateek
    • Nuclear Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.175-182
    • /
    • 2008
  • The results of process development for the blending of waste salt from the electrorefining of spent fuel with zeolite-A are presented. This blending is a key step in the ceramic waste process being used for treatment of EBR-II spent fuel and is accomplished using a high-temperature v-blender. A labscale system was used with non-radioactive surrogate salts to determine optimal particle size distributions and time at temperature. An engineering-scale system was then installed in the Hot Fuel Examination Facility hot cell and used to demonstrate blending of actual electrorefiner salt with zeolite. In those tests, it was shown that the results are still favorable with actinide-loaded salt and that batch size of this v-blender could be increased to a level consistent with efficient production operations for EBR-II spent fuel treatment. One technical challenge that remains for this technology is to mitigate the problem of material retention in the v-blender due to formation of caked patches of salt/zeolite on the inner v-blender walls.

Preliminary design of a production automation framework for a pyroprocessing facility

  • Shin, Moonsoo;Ryu, Dongseok;Han, Jonghui;Kim, Kiho;Son, Young-Jun
    • Nuclear Engineering and Technology
    • /
    • 제50권3호
    • /
    • pp.478-487
    • /
    • 2018
  • Pyroprocessing technology has been regarded as a promising solution for recycling spent fuel in nuclear power plants. The Korea Atomic Energy Research Institute has been studying the current status of equipment and facilities for pyroprocessing and found that existing facilities are manually operated; therefore, their applications have been limited to laboratory scale because of low productivity and safety concerns. To extend the pyroprocessing technology to a commercial scale, the facility, including all the processing equipment and the material-handling devices, should be enhanced in view of automation. In an automated pyroprocessing facility, a supervised control system is needed to handle and manage material flow and associated operations. This article provides a preliminary design of the supervising system for pyroprocessing. In particular, a manufacturing execution system intended for an automated pyroprocessing facility, named Pyroprocessing Execution System, is proposed, by which the overall production process is automated via systematic collaboration with a planning system and a control system. Moreover, a simulation-based prototype system is presented to illustrate the operability of the proposed Pyroprocessing Execution System, and a simulation study to demonstrate the interoperability of the material-handling equipment with processing equipment is also provided.

STATUS OF PYROPROCESSING TECHNOLOGY DEVELOPMENT IN KOREA

  • Song, Kee-Chan;Lee, Han-Soo;Hur, Jin-Mok;Kim, Jeong-Guk;Ahn, Do-Hee;Cho, Yung-Zun
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.131-144
    • /
    • 2010
  • The Korea Atomic Energy Research Institute (KAERI) has been developing pyroprocessing technology for recycling useful resources from spent fuel since 1997. The process includes pretreatment, electroreduction, electrorefining, electrowinning, and a waste salt treatment system. This paper briefly addresses unit processes and related innovative technologies. As for the electroreduction step, a stainless steel mesh basket was applied for adaption of granules of uranium oxide. This basket was designed for ready handling and transfer of feed material. A graphite cathode was used for the continuous collection of uranium dendrite in the electrorefining system. This enhances the throughput of the electrorefiner. A particular mesh type stirrer was designed to inhibit uranium spill-over at the liquid Cd crucible. A residual actinide recovery system was also tested to recover TRU tracer. In order to reduce the waste volume, a crystallization method is employed for Cs and Sr removal. Experiments on the unit processes were tested successfully, and based on the results, engineering-scale equipment has been designed for the PRIDE (PyRoprocess Integrated inactive DEmonstration facility).