• 제목/요약/키워드: Pyroprocess facility

검색결과 15건 처리시간 0.034초

IDENTIFICATION OF SAFETY CONTROLS FOR ENGINEERING-SCALE PYROPROCESS FACILITY

  • MOON, SEONG-IN;SEO, SEOK-JUN;CHONG, WON-MYUNG;YOU, GIL-SUNG;KU, JEONG-HOE;KIM, HO-DONG
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.915-923
    • /
    • 2015
  • Pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems in Korea. The Korea Atomic Energy Research Institute, Daejeon, Korea has been studying pyroprocess technology, and the conceptual design of an engineering-scale pyroprocess facility, called the Reference Engineering-scale Pyroprocess Facility, has been performed on the basis of a 10 ton heavy metal throughput per year. In this paper the concept of Reference Engineering-scale Pyroprocess Facility is introduced along with its safety requirements for the protection of facility workers, collocated workers, the off-site public, and the environment. For the identification of safety structures, systems, and components and/or administrative controls, the following activities were conducted: (1) identifying hazards associated with operations; (2) identifying potential events associated with these hazards; and (3) identifying the potential preventive and/or mitigative controls that reduce the risk associated with these accident events. This study will be used to perform a safety evaluation for accidents involving any of the hazards identified, and to establish safety design policies and propose a more definite safety design.

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

PRELIMINARY SAFETY STUDY OF ENGINEERING-SCALE PYROPROCESS FACILITY

  • Moon, Seong-In;Chong, Won-Myung;You, Gil-Sung;Ku, Jeong-Hoe;Kim, Ho-Dong;Lim, Yong-Kyu;Chang, Hyeon-Sik
    • Nuclear Engineering and Technology
    • /
    • 제46권1호
    • /
    • pp.63-72
    • /
    • 2014
  • Pyroprocess technology has been considered as a fuel cycle option to solve the spent fuel accumulation problems in Korea. The Korea Atomic Energy Research Institute has been studying pyroprocess technology, and the conceptual design of an engineering-scale pyroprocess facility, called the Advanced Fuel Cycle (AFC) facility, has been performed on the basis of a 10tHM throughput per year. In this paper, the concept of the AFC facility was introduced, and its safety evaluations were performed. For the safety evaluations, anticipated accident events were selected, and environmental safety analyses were conducted for the safety of the public and workers. In addition, basic radiation shielding safety analyses and criticality safety analyses were conducted. These preliminary safety studies will be used to specify the concept of safety systems for pyroprocess facilities, and to establish safety design policies and advance more definite safety designs.

Advanced Depreciation Cost Analysis for a Commercial Pyroprocess Facility in Korea

  • Kim, Sungki;Ko, Wonil;Youn, Saerom;Gao, Ruxing;Chung, Yanghon;Bang, Sungsig
    • Nuclear Engineering and Technology
    • /
    • 제48권3호
    • /
    • pp.733-743
    • /
    • 2016
  • The purpose of this study is to present a rational depreciation method for a pyroprocess cost calculation. Toward this end, the so-called advanced decelerated depreciation method (ADDM) was developed that complements the limitations of the existing depreciation methods such as the straight-line method and fixed percentage of declining-balance method. ADDM was used to show the trend of the direct material cost and direct labor cost compared to the straight-line or fixed percentage of the declining-balance methods that are often used today. As a result, it was demonstrated that the depreciation cost of the ADDM, which assumed a pyroprocess facility's life period to be 40 years with a deceleration rate of 5%, takes up 4.14% and 27.74% of the pyroprocess unit cost ($781/kg heavy metal) in the $1^{st}$ and final years, respectively. In other words, it was found that the ADDM can cost the pyroprocess facility's capital investment rationally every year. Finally, ADDM's validity was verified by confirming that the sum of the depreciation cost by year, and the sum of the purchasing cost of the building and equipment, are the same.

Monte Carlo simulations of criticality safety assessments of transuranic element storage in a pyroprocess facility

  • Kim, Jinhwan;Kim, Jisoo;Lim, Kyung Taek;Ahn, Seong Kyu;Park, Se Hwan;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, criticality safety assessments of the potential for storing transuranic element (TRU) ingots via a pyroprocess were evaluated to determine the appropriate TRU storage design parameters, in this case the ratio of the TRU ingot height to the radius and the number of TRU ingot canisters stacked within a container. Various accident situations were modeled over a modeling period of 5 years for a cumulative inventory of TRU ingots with various water densities in submerged containers and with various pitches between the containers in the facility. Under these combinations, we calculated the threshold of TRU height and radius ratio depending on the number of canisters in a container to keep the stored TRU in a subcritical state. The ratio of the TRU ingot height to radius should not exceed 4.5, 1.1, 0.5, 0.3, and 0.2 for two, three, four, five, and six levels of stacked canisters in a container, respectively.

Chemical Process Safety at a Pyroprocess Facility

  • Seo, Seok-Jun;Jeon, Hongrae;Jo, Woojin;Noh, Siwan;Ku, Jeong-Hoe;Lee, Hyojik
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2017년도 춘계학술논문요약집
    • /
    • pp.114-115
    • /
    • 2017
  • PDF

가상 조작기를 이용한 3D 모델링 및 시뮬레이션 (3D Modeling and Simulation using Virtual Manipulator)

  • 박희성;김호동
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2011년도 춘계학술발표대회
    • /
    • pp.547-550
    • /
    • 2011
  • The purpose of this paper is to verify and validate the maintenance tasks of the construction of a nuclear facility using a digital mock-up and simulation technology instead of a physical mock-up. Prior to the construction of a nuclear facility, a remote simulator that provides the opportunity to produce a complete digital mock-up of the PRIDE (Pyroprocess Integrated Inactive DEmonstration Facility) region and its remote handling equipment, including operations and maintenance procedures has been developed. In this paper, the system architecture and graphic user interface of a remote simulator that coincides with the extraordinary nature of a nuclear fuel cycle facility is introduced. In order to analyze the remote accessibility of a remote manipulator, virtual prototyping that was performed it by using haptic device of external input devices under a 3D full-scale digital mock-up is explained.

ERGONOMIC ANALYSIS OF A TELEMANIPULATION TECHNIQUE FOR A PYROPROCESS DEMONSTRATION FACILITY

  • Yu, Seungnam;Lee, Jongkwang;Park, Byungsuk;Kim, Kiho;Cho, Ilje
    • Nuclear Engineering and Technology
    • /
    • 제46권4호
    • /
    • pp.489-500
    • /
    • 2014
  • In this study, remote handling strategies for a large-scale argon cell facility were considered. The suggested strategies were evaluated by several types of field test. The teleoperation tasks were performed using a developed remote handling system, which enabled traveling over entire cell area using a bridge transport system. Each arm of the system had six DOFs (degrees of freedom), and the bridge transport system had four DOFs. However, despite the dexterous manipulators and redundant monitoring system, many operators, including professionals, experienced difficulties in operating the remote handling system. This was because of the lack of a strategy for handling the installed camera system, and the difficulty in recognizing the gripper pose, which might fall outside the FOV (field of vision) of the system during teleoperation. Hence, in this paper, several considerations for the remote handling tasks performed in the target facility were discussed, and the tasks were analyzed based on ergonomic factors such as the workload. Toward the development of a successful operation strategy, several ergonomic issues, such as active/passive view of the remote handling system, eye/hand alignment, and FOV were considered. Furthermore, using the method for classifying remote handling tasks, several unit tasks were defined and evaluated.