• 제목/요약/키워드: Pyrolysis process

검색결과 442건 처리시간 0.023초

유동상 반응로 조건에서 목재와 RDF 부분 산화의 영향 (Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed)

  • 김태현;최상민
    • 한국연소학회지
    • /
    • 제13권2호
    • /
    • pp.23-32
    • /
    • 2008
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in partial oxidation condition. Gasification characteristics are investigated with results from thermogravimetric analyzer and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction is delayed by the moisture content. However, RDF samples those are easy to break-up don't show the effect of moisture content. The result of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasification of the solid fuel. A simulation to predict the syn-gas composition was conducted by the Aspen Plus process simulator. The cold gas efficiency of the experiment was compared with results from the simulation.

  • PDF

Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors

  • Park, Min Hong;Yun, Young Soo;Cho, Se Youn;Kim, Na Rae;Jin, Hyoung-Joon
    • Carbon letters
    • /
    • 제19권
    • /
    • pp.66-71
    • /
    • 2016
  • The development of nanostructured functional materials derived from biomass and/or waste is of growing importance for creating sustainable energy-storage systems. In this study, nanoporous carbonaceous materials containing numerous heteroatoms were fabricated from waste coffee grounds using a top-down process via simple heating with KOH. The nanoporous carbon nanosheets exhibited notable material properties such as high specific surface area (1960.1 m2 g−1), numerous redox-active heteroatoms (16.1 at% oxygen, 2.7 at% nitrogen, and 1.6 at% sulfur), and high aspect ratios (>100). These unique properties led to good electrochemical performance as supercapacitor electrodes. A specific capacitance of ~438.5 F g−1 was achieved at a scan rate of 2 mV s−1, and a capacitance of 176 F g−1 was maintained at a fast scan rate of 100 mV s−1. Furthermore, cyclic stability was achieved for over 2000 cycles.

Influence of Pyrolysis Conditions and Type of Resin on the Porosity of Activated Carbon Obtained From Phenolic Resins

  • Agarwal, Damyanti;Lal, Darshan;TripathiN, V.S.;Mathur, G.N.
    • Carbon letters
    • /
    • 제4권2호
    • /
    • pp.57-63
    • /
    • 2003
  • In polymer precursor based activated carbon, the structure of starting material is likely to have profound effect on the surface properties of end product. To investigate this aspect phenolic resins of different types were prepared using phenol, mcresol and formaldehyde as reactants and $Et_3N$ and $NH_4OH$ as catalyst. Out of these resins two resol resins PFR1 and CFR1 (prepared in excess of formaldehyde using $Et_3N$ as catalyst in the basic pH range) were used as raw materials for the preparation of activated carbons by both chemical and physical activation methods. In chemical activation process both the resins gave activated carbons with high surface areas i.e. 2384 and 2895 $m^2/g$, but pore size distribution in PFR1 resin calculated from Horvath-Kawazoe method, contributes mainly in micropore range i.e. 84.1~88.7 volume percent of pores was covered by micropores. Whereas CFR1 resin when activated with KOH for 2h time, a considerable amount (32.8%) of mesopores was introduced in activated carbon prepared. Physical activation with $CO_2$ leads to the formation of activated carbon with a wide range of surface area (503~1119 $m^2/g$) with both of these resins. The maximum pore volume percentage was obtained in 3-20 ${\AA}$ region by physical activation method.

  • PDF

화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조 (Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation)

  • 이정한;김성덕;김진천;최철진;이찬규
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment

  • Ahmed, Sanjrani Manzoor;Zhou, Boxun;Zhao, Heng;Zheng, You Ping;Wang, Yue;Xia, Shibin
    • Membrane and Water Treatment
    • /
    • 제11권2호
    • /
    • pp.151-158
    • /
    • 2020
  • ACF preparation from different materials has been attached with great attention during these years. This study was conducted to prepare activated carbon fiber (ACF) from luffa through the processes i.e pre-treatment, pre-oxidation and carbonization activation. Besides, this study also characterizes the ACF and its effect, i.e effect of pre-oxidation time and temperature also activation time and temperature on the compressive strength of ACF were investigated. The results from SEM, BET, FTIR and XRD show that the ACF is very efficient. The products under the optimum conditions had a specific surface area of 478.441 m2 /g with an average pore diameter of 3.783nm, and a pore volume of 0.193 cm3 /g. The surface of the luffa fiber is degummed and exposed, which is beneficial to the subsequent process and the increase of product properties. The compressive strength of HP-ACF was prepared under the optimum conditions, which can reach 0.2461 MPa. ACF is rich in micro-pores and has a good application prospect in the field of environmental protection.

유동상 반응로 조건에서 목재와 RDF 부분가스화의 영향 (Effect of Partial Oxidation of Wood and RDF in a Fluidized Bed)

  • 김태현;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2007년도 제34회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.161-167
    • /
    • 2007
  • Gasification characteristics in the fluidized bed reactor are essential for the design of a gasification furnace to optimize the operation condition. Moisture content of the solid fuel is one of the important factors to influence directly the gasification characteristics. So it is necessary to investigate the effect of moisture content of solid fuel in gasification process. Gasification characteristics are investigated with results from thermogravimetric analyser and lab-scale fluidized bed reactor for wood and RDF samples along with changing moisture contents. Additionally lab-scale fluidized bed reactor was run continuously and gas concentrations at the exit were measured. It is observed that the rate of reaction in partial oxidation condition is in between the results from the combustion environment and from the inert condition. Moisture content in a particle slows down the heating rate of a particle. So, reaction time is delayed by the moisture content. However, RDF samples that are easy to break-up doesn't show the effect of moisture content. The results of continuous operation condition shows that proper moisture content promotes gasification because steam from the particles helps gasifcation of the sold fuel.

  • PDF

솔-젤 회전 코팅법을 이용한 강유전성 $BaTiO_3$ 박막제조 (Preparation of Ferroelectric $Cr_3C_2$ Thin Film Using Sol-Gel Spin Coating Process)

  • 배호기;고태경
    • 한국세라믹학회지
    • /
    • 제31권7호
    • /
    • pp.795-803
    • /
    • 1994
  • Ferroelectric BaTiO3 thin film was produced using BaTi-ethoxide sol. This sol was prepared from BaTi-ethoxide by a partial hydrolysis with ammonia as a basic catalyst and ethylene glycol as a chelating agent. BaTiO3 thin film was prepared from three continuous spin-coating layers of the sol on bare Si(100) wafer at 2500 rpm followed by pyrolysis at $700^{\circ}C$ for 30 min. After the heat treatment, the film was 0.200$\pm$0.010 ${\mu}{\textrm}{m}$ thick and its grain size was 0.059 ${\mu}{\textrm}{m}$. On the other hand, electrical properties were measured for BaTiO3 thin film separately prepared on Au-deposited silicon wafer. The dielectric constant and loss of the BaTiO3 thin film at room temperature was 150~160 and 0.04 respectively, which was measured at 10 kHz and oscillation level of 0.1 V. In the measurements of the dielectric properties at high temperatures, it was observed that the capacitance of the thin film increases steeply, while the dielectric loss reaches maximum around 1$25^{\circ}C$, which corresponds a phase transition from tetragonal to cubic BaTiO3.

  • PDF

Nano-sized $Gd_{2}O_{3}:Eu$ phosphor particles of high brightness

  • Lee, Chang-Hee;Roh, Hyun-Sook;Kang, Yun-Chan;Park, Hee-Dong;Park, Seung-Bin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.791-794
    • /
    • 2003
  • To synthesize $Gd_{2}O_{3}:Eu$ phosphor powder of nano size and high luminescence efficiency under UV (ultraviolet) and VUV (vacuum ultraviolet) light, organic additives such as citric acid and ethylene glycol and $Na_{2}CO_{3}$ flux were introduced in large-scale spray pyrolysis and critical conditions for forming nano-sized particles were investigated. The $Gd_{2}O_{3}:Eu$ phosphor particles prepared from solutions with organic additives such as citric acid and ethylene glycol had micron size and spherical shape. However, the particles prepared from polymeric precursor solution with $Na_{2}CO_{3}$ flux had nano size and non-aggregation characteristics. The as-prepared spherical particles with micron size turned into nano-sized particles during post-treatment by recrystallization process. The nano-sized $Gd_{2}O_{3}:Eu$ phosphor particles showed higher brightness than the commercial $Y_2O_3:Eu$ phosphor product under both UV light of 254nm and VUV light of 147 nm.

  • PDF

수정된 TFA-MOD법에 의한 $SmBa_{2}Cu_{3}O_{7-{\delta}}$ 박막의 제조 (Fabrication of High-Quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ Thin Films by a Modified TFA-MOD Process)

  • 김덕진;송규정;문승현;박찬;유상임
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.77-82
    • /
    • 2005
  • We report a successful fabrication of high-quality $SmBa_{2}Cu_{3}O_{7-{\delta}}$ (SmBCO) thin films on $LaAlO_3$(LAO)(100) single crystalline substrates by a modified TFA-MOD method. After the pyrolysis heat treatment of spin-coated films up to $400^{\circ}C$, SmBCO films were fired at various temperatures ranging from 810 to $850^{\circ}C$ in a reduced oxygen atmosphere (10 ppm $O_2$ in Ar). Optimally processed SmBCO films exhibited the zero-resistance temperature ($T_{c,zero}$) of 90.2 K and the critical current density ($J_c$) of $0.8\;MA/cm^2$ at 77K in self-field. Compared with the $J_c$ values (normally, > $2\;MA/cm^2$ at 77 K) of MOD-TFA processed YBCO films, rather depressed $J_c$ values in SmBCO films are most probably attributed to the existence of ${\alpha}$-axis oriented grains.

  • PDF

SCR 시스템의 요소용액 미립화 및 분해반응 특성 예측에 관한 전산 해석 연구 (A Research on the Characteristics of Spray-Induced Mixing and Thermal Decomposition of Urea Solution in SCR System)

  • 김주연;민병수;하지수;류승협
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.818-826
    • /
    • 2004
  • The spray-induced mixing characteristics and thermal decomposition of aqueous urea solution into ammonia have been studied to design optimum sizes and geometries of the mixing chamber in SCR(Selective Catalytic Reduction) system. The cold flow tests about the urea-injection nozzle were performed to clarify the parameters of spray mixing characteristics such as mean diameter and velocity of drops and spray width determined from the interactions between incoming air and injected drops. Discrete particle model in Fluent code was adopted to simulate spray-induced mixing process and the experimental results on the spray characteristics were used as input data of numerical calculations. The simulation results on the spray-induced mixing were verified by comparing the spray width extracted from the digital images with the simulated Particle tracks of injected drops. The single kinetic model was adopted to predict thermal decomposition of urea solution into ammonia and solved simultaneously along with the verified spray model. The hot air generator was designed to match the flow rate and temperature of the exhaust gas of the real engines The measured ammonia productions in the hot air generator were compared with the numerical predictions and the comparison results showed good agreements. Finally, we concluded that the design capabilities for sizing optimum mixing chamber were established.