• Title/Summary/Keyword: Pyrolysis oil

Search Result 251, Processing Time 0.023 seconds

Study on basic characteristics for utilization of bituminous pyrolysis by-products (인도네시아 역청 열분해 무기 부산물의 활용을 위한 기초 특성 연구)

  • Jang, Jung Hee;Han, Gi Bo;Park, Cheon-Kyu;Jeon, Cheol-Hwan;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.892-898
    • /
    • 2017
  • In this study, the basic properties of recoverable gaseous and solid materials were investigated from heavy oil contained in the resources. The basic characteristics of pyrolysis reaction for the conversion of bituminous oil to pyrolysis various temperature were investigated. The characteristics of gas and solid phase byproducts were also investigated with a laboratory scale fixed bed reactor according to various reaction temperature. As a result, it was confirmed that the oil yield was about 17% at $550^{\circ}C$ and $CH_4$, $CaCO_3$ and CaO could be recovered as by-products.

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

Fuel Oil Characteristics of Mulching Waste Vinyl by Indirect Heating Emulsion System (간접가열 유화설비에 의한 폐멀칭비닐의 연료유 특성)

  • Kim, Hae-Ji;Kim, Nam-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • This paper describes the fuel oil characteristics of mulching waste vinyl by indirect heating emulsion system. For the emulsion experiment of waste vinyl, the system is composed of melting furnace, the 1th pyrolysis furnace, and the 2nd pyrolysis furnace. The mulching waste vinyl is used for the fuel oil characteristics analysis of mulching waste vinyl. The refined oil, gasoline, and diesel oil are extracted and quantified to analysis the fuel oil characteristics. From the results of experiments, it has been shown that the production of fuel oil from mulching waste vinyl is possible using the emulsion system.

  • PDF

A Study on Catalytic Pyrolysis of Polypropylene with Ni/sand (Ni/sand를 이용한 폴리프로필렌 촉매 열분해 연구)

  • Kim, Soo Hyun;Lee, Roosse;Sohn, Jung Min
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.232-239
    • /
    • 2021
  • In order to develop a novel system named "thermal medium and gas circulation type pyrolysis system," this study was conducted to obtain basic data for process simulation before performing the pyrolysis experiment. Polypropylene (PP) was chosen as model material in the basic pyrolysis experiment instead of waste plastic and fluidized sand (hereinafter referred to as "sand"), and it was used as a heat transfer material in the "thermal medium and gas circulation type pyrolysis system." Ni was impregnated as an active catalyst on the sand to promote catalytic pyrolysis. The basic physical properties of PP were analyzed using a thermogravimetric analyzer, and pyrolysis was performed at 600 ℃ in an N2 atmosphere to produce liquid oil. The distribution of the carbon number of the liquid oil generated through the catalytic pyrolysis reaction was analyzed using GC/MS. We investigated the effects of varying the pyrolysis space velocity and catalyst amount on the yield of liquid oil and the carbon number distribution of the liquid oil. Using Ni/sand, the yield of liquid oil was increased except with the pyrolysis condition of 10 wt% Ni/sand at a space velocity of 30,000 h-1, and the composition of C6 ~ C12 hydrocarbons increased. With increases in the space velocity, higher yields of liquid oil were obtained, but the composition of C6 ~ C12 hydrocarbons was reduced. With 1 wt% Ni/sand, the oil yield obtained was greater than that obtained with 10 wt% Ni/sand. In summary, when 1 wt% Ni/sand was used at a space velocity of 10,000 h-1, the oil yield was 60.99 wt% and the composition of C6 ~ C12 hydrocarbons was highest at 42.06 area%.

Preparation of Porous Layered Carbon Using Magadiite Template (Magadiite 주형을 이용한 층상 카본의 합성)

  • Choe, Seok-Hyon;Jeong, Soon-Yong;Oh, Seong-Geun;Kwon, Oh-Yun
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.408-412
    • /
    • 2005
  • Porous layered carbon was prepared by interlayer pyrolysis of pyrolysis fuel oil (PFO) using magadiite template and successive dissolution of template. Particle morphology was plate type with d-spacing of approximately 0.7 nm and it had constant interlayer space. Specific surface area was $147{\sim}385m^2/g$ depending upon template type, mixing ratios and pyrolysis time.

A Study on Hospital Wasted Plastic by the Pyrolysis over Catalyst (촉매첨가에 의한 병원폐플라스틱의 열분해 처리에 관한 연구)

  • 윤오섭;김수생
    • Journal of Environmental Health Sciences
    • /
    • v.13 no.2
    • /
    • pp.51-63
    • /
    • 1987
  • We identified pyrolysis condition, effect of catalyzer and pyrolysis mechanism through contact decomposed method by adding Bentonite in waste plastic of hospital solid waste. The result from this study were summarized as the followings: 1. The optimum fuel oil were obtained when hospital wasted plastic (P.P) and Bentonite were mixed in the ratio of 30:1. 2. Maximum absorption wave of hospital wasted plastic (P.P) appeared at 2900cm$^{-1}$, 1480cm$^{-1}$, 1360cm$^{-1}$ and 1180 cm$^{-1}$ by FT-IR and the plastics were identified and confirmed. 3. Reaction temperature of hospital wasted plastic started at 360$\circ$C, proceed rapidly at 437.5$\circ$C and finished at 481$\circ$C. The residue was 0.729%. When bentonire was added started at 318$\circ$C, proceed rapidly at 399.5$\circ$C and finished at 449.3$\circ$C, the residue being 4.23%. 4. Pyrolysis products of hospital wasted plastic were about 90 kinds. The Main components were 2-Heptene-3-ethyl-4-trimethyl (27.4%), 1-Heptene-2-isobutyl-6-methyl (8.6%) and 1-Heptene decene (7.7%). There was little component difference at different temperature. This is the result from stability of decomposition product. 5. Pyrolysis efficiency increased by the addition Bentonire. 6. Some of the Environmental and Sanitary problems could be solved by the pyrolysis of hospital wasted plastic and the decomposed products were to be used as fuel oil.

  • PDF

Liquefaction Characteristics of Polyethylene-polystyrene Mixture by Pyrolysis at Low Temperature (Polyethylene-polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Lee, Bong-Hee;Kim, Su-Ho;Choi, Hong-Jun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.495-502
    • /
    • 2008
  • To investigate the synergy effect on the pyrolysis of mixture of polyethylene(PE) and polystyrene(PS), the pyrolysis of PE, PS and the mixture of PE-PS was carried out in a batch reactor at the atmospheric pressure and $450^{\circ}C$. The pyrolysis time was from 20 to 80 mins. The liquid products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the distillation temperatures based on the petroleum product quality standard of Korea Institute of Petroleum Quality. The analysis of the product oils by GC/MS showed that the new components produced by mixing were not detected. The synergy effect according to mixing of PE and PS did not also appear. The conversion and yield of mixtures were in proportion to the mixing ratio of sample.

Study on Recovery of Polymeric Raw Materials from WastePolystyrene in Motor Oil using Microwave Thermal Decomposition (마이크로웨이브 열분해(熱分解)를 이용(利用)한 폐(廢) 폴리스티렌과 모터 오일 혼합물(混合物)로부터 고분자(高分子) 원료(原料) 물질(物質) 회수(回收)에 관한 연구(硏究))

  • Kang, Tae-Won
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.11-16
    • /
    • 2006
  • A novel microwave-induced pyrolysis was used for the recovery of valuable products from waste polystyrene in motor oil. Quartz tube was introduced as microwave reactor and silicon carbide was used as the microwave absorbent. In the experiments, different pyrolysis conditions were applied, such as time range from 30 minutes to 1 hour and microwave input power range from 180 to 250W. The distillate products from pyrolysis were analyzed with GC/MS. Styrene, 1-methyl styrene, toluene, ethyl benzene were the four main products. Styrene recovery rate from polystyrene was around 50%. Temperature for the complete pyrolysis using microwave was around $300^{\circ}C$ which is much lower than that of conventional thermal pyrolysis.

Studies on Pyrolysis Behaviour of Banana Stem as Precursor for Porous Carbons

  • Manocha, Satish;Bhagat, Jignesh H.;Manocha, Lalit M.
    • Carbon letters
    • /
    • v.2 no.2
    • /
    • pp.91-98
    • /
    • 2001
  • Porous carbons have been prepared from different parts of banana stems using two different routes, viz., by pyrolysing the mass at different temperatures as well as by treating the dried mass with chemicals followed by pyrolysis. The pyrolysis behaviour of all these materials has been studied up to $1000^{\circ}C$. Samples treated with acids exhibit more increase in surface area as compared to those treated with alkalies or salts. Analysis of BET surface area shows that the carbon prepared at low temperature shows mixed porosity, i.e., micro and mesopores. Samples heated to high temperature above $700^{\circ}C$ show decrease in macroporosity and increase in microporosity. Liquid adsorption studies have been made using methylene blue and heavy oil. The activated carbons so prepared exhibit higher oil adsorption mainly in the macro and mesopores.

  • PDF

Hydrodeoxygenation of Spent Coffee Bio-oil from Fast Pyrolysis using HZSM-5 and Dolomite Catalysts

  • Park, Jeong Woo;Ly, Hoang Vu;Linh, Le Manh;Tran, Quoc Khanh;Kim, Seung-Soo;Kim, Jinsoo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • Spent coffee is one of biomass sources to be converted into bio-oil. However, the bio-oil should be further upgraded to achieve a higher quality bio-oil because of its high oxygen content. Deoxygenation under hydrotreating using different catalysts (catalytic hydrodeoxygenation; HDO) is considered as one of the promising methods for upgrading bio-oil from pyrolysis by removal of O-containing groups. In this study, the HDO of spent coffee bio-oil, which was collected from fast pyrolysis of spent coffee ($460^{\circ}C$, $2.0{\times}U_{mf}$), was carried out in an autoclave. The product yields were 72.16 ~ 96.76 wt% of bio-oil, 0 ~ 18.59 wt% of char, and 3.24 ~ 9.25 wt% of gas obtained in 30 min at temperatures between $250^{\circ}C$ and $350^{\circ}C$ and pressure in the range of 3 to 9 bar. The highest yield of bio-oil of 97.13% was achieved at $250^{\circ}C$ and 3 bar, with high selectivity of D-Allose. The carbon number distribution of the bio-oil was analyzed based on the concept of simulated distillation. The $C_{12}{\sim}C_{14}$ fraction increased from 22.98 wt% to 27.30 wt%, whereas the $C_{19}{\sim}C_{26}$ fraction decreased from 24.74 wt% to 17.18 wt% with increasing reaction time. Bio-oil yields were slightly decreased when the HZSM-5 catalyst and dolomite were used. The selectivity of CO was increased at the HZSM-5 catalyst and decreased at the dolomite.