DOI QR코드

DOI QR Code

Study on basic characteristics for utilization of bituminous pyrolysis by-products

인도네시아 역청 열분해 무기 부산물의 활용을 위한 기초 특성 연구

  • Jang, Jung Hee (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Han, Gi Bo (Plant Engineering Center, Institute for Advanced Engineering) ;
  • Park, Cheon-Kyu (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Jeon, Cheol-Hwan (Petroleum Technology R&D Center, Korea Institute of Petroleum Management) ;
  • Kim, Jae-Kon (Petroleum Technology R&D Center, Korea Institute of Petroleum Management)
  • 장정희 (고등기술연구원 플랜트엔지니어링센터) ;
  • 한기보 (고등기술연구원 플랜트엔지니어링센터) ;
  • 박천규 (한국석유관리원 석유기술연구소) ;
  • 전철환 (한국석유관리원 석유기술연구소) ;
  • 김재곤 (한국석유관리원 석유기술연구소)
  • Received : 2017.11.05
  • Accepted : 2017.12.02
  • Published : 2017.12.30

Abstract

In this study, the basic properties of recoverable gaseous and solid materials were investigated from heavy oil contained in the resources. The basic characteristics of pyrolysis reaction for the conversion of bituminous oil to pyrolysis various temperature were investigated. The characteristics of gas and solid phase byproducts were also investigated with a laboratory scale fixed bed reactor according to various reaction temperature. As a result, it was confirmed that the oil yield was about 17% at $550^{\circ}C$ and $CH_4$, $CaCO_3$ and CaO could be recovered as by-products.

본 연구에서는 자원내 포함된 역청의 경질화 과정에서 배출 및 회수되는 가스상 물질 및 고체상 물질을 활용하기 위한 기초 성상이 조사되었다. 이를 위하여 열분해 온도 별 역청성 오일의 전환에 대한 열분해반응 기초특성이 조사되었다. 또한 실험실 규모의 고정층 반응기를 이용하여 반응온도에 따른 가스 및 고체상 분산물의 특성을 조사하였다. 그 결과 $550^{\circ}C$에서 약 17%의 오일 수율을 얻었으며, 부산물로는 $CH_4$, $CaCO_3$ 및 CaO를 회수할 수 있음을 확인하였다.

Keywords

References

  1. C. JIA, M. ZHENG, and Y. ZHANG, "Unconventional hydrocarbon resources in China and the prospect of exploration and development," Petroleum Exploration and Development, vol. 39, no. 2, pp. 139-146, (2012). https://doi.org/10.1016/S1876-3804(12)60026-3
  2. J. Masliyah, Z. J. Zhou, Z. Xu, J. Czarnecki, and H. Hamza, "Understanding Water-Based Bitumen Extraction from Athabasca Oil Sands," The Canadian Journal of Chemical Engineering, vol. 82, no. 4, pp. 628-654, (2008). https://doi.org/10.1002/cjce.5450820403
  3. Meng, H. Hu, Q. Zhang, and M. Ding, "Extraction of Tumuji Oil Sand with Suband Supercritical Water," Energy & Fuels, vol. 20, no. 3, pp. 1157-1160, (2006). https://doi.org/10.1021/ef050418o
  4. Q. Dai and K. H. Chung, "Hot water extraction process mechanism using model oil sands," Fuel, vol. 75, no. 2, pp. 220-226, (1996). https://doi.org/10.1016/0016-2361(95)00218-9
  5. Q. LIU, Z. CUI, and T. ETSELL, "Characterization of Athabasca oil sands froth treatment tailings for heavy mineral recovery," Fuel, vol. 85, no. 5, pp. 807-814, (2006). https://doi.org/10.1016/j.fuel.2005.08.032
  6. E. W. Allen, "Process water treatment in Canada's oil sands industry: I. Target pollutants and treatment objectives," Journal of Environmental Engineering and Science, vol. 7, no. 2, pp. 123-138, (2008). https://doi.org/10.1139/S07-038
  7. S. Cha, F. V. Hanson, D. C. Longstaff, and A. G. Oblad, "Pyrolysis of bitumenimpregnated sandstones: a comparison of fluidized bed and rotary kiln reactors," Fuel, vol. 70, no. 11, pp. 1357-1361, (1991). https://doi.org/10.1016/0016-2361(91)90229-4
  8. Meng, H. Hu, Q. Zhang, X. Li, and B. Wu, "Pyrolysis Behaviors of Tumuji Oil Sand by Thermogravimetry (TG) and in a Fixed Bed Reactor," Energy & Fuels, vol. 21, no. 4, pp. 2245-2249, (2007). https://doi.org/10.1021/ef070048z
  9. F. V. Hanson, S.-M. Cha, M. D. Deo, and A. G. Oblad, "Pyrolysis of oil sand from the Whiterocks deposit in a rotary kiln," Fuel, vol. 71, no. 12, pp. 1455-1463, (1992). https://doi.org/10.1016/0016-2361(92)90219-E
  10. J. V. Fletcher, M. D. Deo, and F. V. Hanson, "Fluidized bed pyrolysis of a Uinta Basin oil sand," Fuel, vol. 74, no. 3, pp. 311-316, (1995). https://doi.org/10.1016/0016-2361(95)93461-L
  11. F. J. Navarro, P. Partal, F. J. Mart nez-Boza, and C. Gallegos, "Influence of processing conditions on the rheological behavior of crumb tire rubber-modified bitumen," Journal of Applied Polymer Science, vol. 104, no. 3, pp. 1683-1691, (2007). https://doi.org/10.1002/app.25800
  12. S. K. Harjai, C. Flury, J. Masliyah, J. Drelich, and Z. Xu, "Robust Aqueous- Nonaqueous Hybrid Process for Bitumen Extraction from Mineable Athabasca Oil Sands," Energy & Fuels, vol. 26, no. 5, pp. 2920-2927, Dec. (2011). https://doi.org/10.1021/ef300270j
  13. O. Omole, M. N. Olieh, and T. Osinowo, "Thermal visbreaking of heavy oil from the Nigerian tar sand," Fuel, vol. 78, no. 12, pp. 1489-1496, (1999). https://doi.org/10.1016/S0016-2361(99)00023-X
  14. S. Syed, R. Qudaih, I. Talab, and I. Janajreh, "Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data," Fuel, vol. 90, no. 4, pp. 1631-1637, (2011). https://doi.org/10.1016/j.fuel.2010.10.033
  15. C. Jia, Q. Wang, J. Ge, and X. Xu, "Pyrolysis and combustion model of oil sands from non-isothermal thermogravimetric analysis data," Journal of Thermal Analysis and Calorimetry, vol. 116, no. 2, pp. 1073-1081, (2014). https://doi.org/10.1007/s10973-013-3591-4
  16. A. Al-Otoom, M. Al-Harahsheh, M. Allawzi, S. Kingman, J. Robinson, A. Al-Harahsheh, and A. Saeid, "Physical and thermal properties of Jordanian tar sand," Fuel Processing Technology, vol. 106, pp. 174-180, (2013). https://doi.org/10.1016/j.fuproc.2012.07.021