• Title/Summary/Keyword: Pyrolysis Oil

Search Result 250, Processing Time 0.181 seconds

Decomposition Characteristics of Raw Rubber and Tire by Thermal Degradation Process (열분해 공정을 이용한 원료고무와 타이어의 분해 특성)

  • Kim, Won-Il;Kim, Hyung-Jin;Jung, Soo-Kyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.7
    • /
    • pp.1052-1060
    • /
    • 1999
  • Tire and raw material of tire, i.e., SBR were degraded using pyrolysis process. The yield of pyrolytic oil was increased and that of gas was decreased with increase of operating temperature in pyrolysis. And the yield of pyrolytic oil was increased and that of gas and char was decreased with increase of heating rate. The maximum oil yields of SBR and tire were 86% and 55% each at $700^{\circ}C$ with a heating rate of $20^{\circ}C/min$. The number average molecular weight ranges of SBR and tire were 740~2486, 740~1719, and the calorific value of SBR and tire was 39~40 kJ/g. The oil components were consisted of mostly 50 aromatic compounds. The particle size was decreased and the surface area was increased with increase of operating temperature, and the BET surface area was $47{\sim}63m^2/g$. The optimum condition of pyrolysis was the temperature of $700^{\circ}C$ with heating rate of $20^{\circ}C$, and the reactor was continuously purged with inert gas to sweep the evolved gases from the reaction zone.

  • PDF

Pyrolysis Characteristics of the Mixture of Waste Fishing Net and Waste Ship Lubricating Oil (폐어망과 선박용 폐윤활유 혼합물의 열분해반응 특성 연구)

  • Kim, Seung-Soo;Kim, Young-Sik
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.568-573
    • /
    • 2008
  • Kinetic tests on pyrolysis of waste fishing net [WFN; nylon-6], waste ship lubricating oil [WSLO] and their mixture were carried out by thermogravimetric analysis (TGA) with heating rate of 0.5, 1.0, and $2.0^{\circ}C/min$. Pyrolysis of waste fishing net started at $300^{\circ}C$, and the main region of decomposition temperature was between 360 and $440^{\circ}C$ at each heating rate. Decomposition temperature of the mixture of WFN and WSLO was lower than that of WFN and WSLO, and the shape of thermogravimetic graph of mixture was different as well. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for the mixture of WFN and WSLO were between 98 and 427 kJ/mol as the conversion increased from 5% to 95%. Tubing reactor was used to analysis of pyrolyzed oil at $440^{\circ}C$ for 80 min. The selectivity of specific hydrocarbons was not detected and the carbon number distribution of the pyrolyzed oil was below $C_{22}$.

Distribution Characteristics of Pyrolysis Products of Polyethylene (폴리에틸렌 열분해 생성물의 분포 특성)

  • Lee, Dong-Hwan;Choi, Hong-Jun;Kim, Dae-Su;Lee, Bong-Hee
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2008
  • To investigate the characteristics of pyrolysis for LDPE, LLDPE and HDPE, the low temperature pyrolysis was carried out in the range of 425 to $500^{\circ}C$ for 35 to 65 min. The liquid products formed during pyrolysis were classified into gasoline, kerosene, light oil and wax according to the distillation temperatures based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. TGA experiments for three PE samples showed that the onset temperature of pyrolysis increased with increasing heating rate, and the onset temperature of pyrolysis at a fixed heating rate was in the order of LDPE$475^{\circ}C$. Yields of gasoline and kerosene were highest at $450^{\circ}C$, 65 min and decreased slightly at above $475^{\circ}C$.

Fundamental Pyrolysis Studies with Molten Metal Fluidized Bed System (Molten metal 유동층을 이용한 열분해 기초 실험)

  • Moon, Jihong;Jeon, Suji;Hwang, Jungho;Bang, Byungryeul;Lee, Uendo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.161-164
    • /
    • 2014
  • The feasibility of a molten metal as a bed material of a pyrolysis system was investigated. The molten metal has various advantages such as high thermal conductivity, wide operating range and low viscosity. Tin was selected since its physical characteristics are suitable for the purpose. As a results, it was found that pyrolytic oil yield and reaction rate were significantly enhanced with the molten Tin. In addition, oxygen component of the product oil was decreased due to Tin oxidation.

  • PDF

Degradation Properties and Production of Fuels of Cellulose - Pyrolysis-Liquefaction - (셀룰로오스의 분해특성 및 연료물질 생성 (I) -열분해·액화반응-)

  • Lee, Jong-Jip;Lee, Byeong-Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.333-340
    • /
    • 2004
  • In this study, thermochemical degradation by pyrolysis-liquefaction of cellulose, the effects of reaction time, reaction temperature, conversion yield, degradation properties and degradation products were investigated . Experiments were performed in a tube reactor by varying reaction time from 20 to 80 min at $200{\sim}500^\circ{C}$. Combustion heating value of liquid products from thermochemical conversion processes of cellulose was in the range of 6,920~6,960cal/g. After 40min of reaction at $400^\circ{C}$ in pyrolysis-liquefaction of cellulose, the energy yield and mass yield was as high as 54.3% and 34.0g oil/100g raw material, respectively. The liquid products from pyrolysis-liquefaction of cellulose contained various kinds of ketones, phenols and furans. ketones and furans could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels.

Catalytic Pyrolysis of Cellulose over SAPO-11 Using Py-GC/MS

  • Lee, In-Gu;Jun, Bo Ram;Kang, Hyeon Koo;Park, Sung Hoon;Jung, Sang-Chul;Jeon, Jong-Ki;Ko, Chang Hyun;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2399-2402
    • /
    • 2013
  • The catalytic pyrolysis of cellulose was carried out over SAPO-11 for the first time. Pyrolyzer-gas chromatography/mass spectroscopy was used for the in-situ analysis of the pyrolysis products. The acid sites of SAPO-11 converted most levoglucosan produced from the non-catalytic pyrolysis of cellulose to furans. In particular, the selectivity toward light furans, such as furfural, furan and 2-methyl furan, was high. When the catalyst/cellulose ratio was increased from 1/1 to 3/1 and 5/1, the increase in the quantity of acid sites led to the promotion of deoxygenation and the resultant increase of the contents of light furan compounds. Because furans can be used as basic feedstock materials, the augmentation of the economical value of bio-oil through the catalytic upgrading over SAPO-11 is considerable.

NO Gas Sensor with Enhanced Sensitivity Using Activated Carbon Prepared from Pyrolysis Fuel Oil and Polyethylene Terephthalate (열분해 연료유 및 PET 기반 활성탄을 이용한 NO 가스 센서의 감도 향상 연구)

  • Kwak, Cheol Hwan;Seo, Sang Wan;Kim, Min Il;Im, Ji Sun;Kang, Seok Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • In this study, a sensor for detection of nitric oxide (NO) gas was developed using petroleum pitch-based activated carbon which was synthesized from pyrolysis fuel oil (PFO). Polyethylene terephthalate (PET) was added to increase molecular weight by stimulating a polymerization of components in PFO during the pitch synthesis process. The increase in the molecular weight of pitch contributed to the improvement of textural properties of activated carbon, such as the specific surface area and micropore volume. It also enhanced the sensitivity of NO gas sensor based on the activated carbon. In addition, the effect of PET addition during the pitch synthesis on the surface oxygen content and conductivity of activated carbon was investigated. Finally, the correlation of the sensitivity with physical properties of activated carbon was analyzed.