• Title/Summary/Keyword: Pyrolysis

Search Result 1,549, Processing Time 0.036 seconds

Catalyst-Free and Large-Area Deposition of Graphitic Carbon Films on Glass Substrates by Pyrolysis of Camphor

  • Nam, Hyobin;Lee, Woong
    • Korean Journal of Materials Research
    • /
    • v.25 no.7
    • /
    • pp.341-346
    • /
    • 2015
  • The feasibility of obtaining graphitic carbon films on targeted substrates without a catalyst and transfer step was explored through the pyrolysis of the botanical derivative camphor. In a horizontal quartz tube, camphor was subjected to a sequential process of evaporation and thermal decomposition; then, the decomposed product was deposited on a glass substrate. Analysis of the Raman spectra suggest that the deposited film is related to unintentionally doped graphitic carbon containing some $sp-sp^2$ linear carbon chains. The films were transparent in the visible range and electrically conductive, with a sheet resistance comparable to that of graphene. It was also demonstrated that graphitic films with similar properties can be reproduciblyobtained, while property control was readily achieved by varying the process temperature.

Synthesis and Characterization of Al2O3/ZrO2, Al2O3/TiO2 and Al2O3/ZrO2/TiO2 Ceramic Composite Particles Prepared by Ultrasonic Spray Pyrolysis

  • Shim, In-Soo;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1127-1134
    • /
    • 2002
  • Fine ceramic particles of zirconia toughened alumina (ZTA), titania toughened alumina (TTA), and zirconia-titania toughened alumina (ZTTA) have been synthesized by ultrasonic spray pyrolysis (USP) at various temperatures from starting salt solutio ns of various compositions aiming for the development of catalytic material. These particles were characterized for properties such as shape, size and size distribution, diffraction pattern, and chemical and phase composition of elements by scanning electron microscopy (SEM), particle size analyzer (PSA), x-ray diffraction (XRD), and inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Chemical compositions and sizes of ceramic composites have been controled by the stoichiometry of salt solutions and the flow rate of spraying solutions. The optimum experimental conditions for the various composite particle syntheses have been proposed.

Preparation of Indium Oxide Particles by Spary Pyrolysis of Indium Nitrate (질산 인듐 수용액의 초음파 분무열분해에 의한 산회인듐 입자의 제조)

  • 김기영;박승민
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.529-534
    • /
    • 1998
  • Agglomeration-free indium oxide particles were produced by ultrasonic pyrolysis of indium nitrate(3 hy-drate) solution. Th mean size of particles was increased from 3 $\mu\textrm{m}$ to 11$\mu\textrm{m}$ with increasing intial con-centrations of indium nitrate from 0.05mol% to 4.83 mol% When the input rate of indium nitrate solution was increased from 0.1 cm3/min to 0.8cm3/min the size of particles remained same and only the pro-duction rate of particles was increased. At 300$^{\circ}C$ the particles were white color with low crystallinity. But the color turned into yellow with increasing reaction temperature. The change of particle size was not ob-served with increasing temperatuer up to 700$^{\circ}C$ IR spectrum and TGA analysis confirmed that the purity of indium oxide was increased with temperature of reaction.

  • PDF

Luminescent properties of a $Zn_2SiO_4:Mn^{2+}$ film phosphor prepared by spray pyrolysis

  • Kim, Kyoun-Gun;Moon, Young-Min;Choi, Sung-Ho;Lee, Sun-Sook;Chung, Taek-Mo;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1300-1302
    • /
    • 2009
  • Transparent $Zn_2SiO_4:Mn^{2+}$ film has been synthesized by spray pyrolysis with various spraying conditions. It illuminates an efficient green emission with the relative emission intensity about 45% under 147nm excitation of a commercial powder phosphor. Additionally, the zinc precursors and additives play a key factor both controlling luminous efficiency and transparency.

  • PDF

Zn$_2SiO_4$ : Mn Phosphor Particles Prepared by Spray Pyrolysis Process

  • Kang, Yun-Chan;Park, Hee-Dong;Lim, Mi-Ae
    • Journal of Information Display
    • /
    • v.2 no.4
    • /
    • pp.57-62
    • /
    • 2001
  • Green-emitting $Zn_2SiO_4$:Mn phosphor particles having a spherical shape and high luminescence intensities under VUV were prepared by spray pyrolysis process under severe preparation conditions. The type of precursor solutions affected the morphology and luminescence characteristics of the prepared particles. The particles prepared from the clear solution by laboratory-scale process had spherical shape and dense morphology, while the particles prepared from the severe preparation conditions had rough surface and collapsed structure. However, the particles prepared from the colloidal solution utilizing fumed silica were spherical in shape and filled morphology at the severe preparation conditions of high flow rate of carrier gas, high concentration of solution, and large reactor size. The prepared $Zn_2SiO_4$:Mn phosphor particles with complete spherical shape had higher photoluminescence intensity than that of the commercial product prepared by solid state reaction.

  • PDF

Y-TZP Sintered with Spherical Fine Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해 구형 미립자를 이용한 Y-TZP 소결체의 제조)

  • 김복희;이정형
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.575-581
    • /
    • 1995
  • Zr0.94Y0.06O1.97 powder was synthesized by the ultrasonic spray pyrolysis with various concentrations of starting solution and the influence of powder characteristics on sintering behavior was investigated. Powders prepared at 75$0^{\circ}C$ were characterized as narrowly distributed submicron spherical particles, which were crystalline, nonagglomerated, and compositionally homogeneous. The changes in concentration from 0.01 to 01. mol/ι increased mean particle size from 0.24 to 0.38${\mu}{\textrm}{m}$ and decreased the specific surface area from 14.2 to 2.9$m^2$/g. The relative density of the specimen from the powders, prepared with the solution concentration of 0.01 mol/ι, was 98% after sintering for 2 hr at 1,45$0^{\circ}C$ and the monoclinic phase was observed after sintering at 1,55$0^{\circ}C$. As the concentration of starting solution was increased, the formation temperature of monoclinic phase was lowered.

  • PDF

Large Scale Production of Nanoparticles by Laser Pyrolysis

  • Tenegal, Francois;Guizard, Benoit;Reau, Adrien;Ye, Chang;Boulanger, Loic;Giraud, Sophie;Canel, Jerome
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.150-151
    • /
    • 2006
  • Laser pyrolysis is a very suitable method for the synthesis of a wide range of nanoparticles. A pilot unit based on this process has been recently developed at CEA. This paper reports results showing the possibility to produce SiC and $TiO_2$ nanoparticles at rates of respectively 1 and 0.2 kg/h and also the possibility to adjust the mean grain size of the particles and their structure by changing the laser intensity and reactants flow rates. First tests of liquid recovery have been also successfully performed to limit the risks of nanoparticles dissemination in the environement during their recovery.

  • PDF

Electrical and Structural Properties of ZnO:Pt Films Prepared by Ultrasonic Spray Pyrolysis (초음파분무열분해법으로 제조한 ZnO:Pt막의 전기적 및 구조적 특성)

  • Ma, Tae-Young;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.66-71
    • /
    • 2004
  • Pt-doped zinc oxide (ZnO:Pt) films were deposited by ultrasonic spray pyrolysis. Resistivity variation with Pt concentration was measured. The Pt distribution in ZnO:Pt films was studied through Auger Electron Spectroscopy (AES). The ZnO:Pt films were annealed in the ambient of air, water vapor and ozone, respectively. The variation in crystallographic properties and surface morphologies with respect to the annealing condition was observed by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The resistivity variation of the films with the annealing condition was measured. Finally, Atomic Force Microscopy (AFM) measurements were carried out to study the effects of the annealing on the roughness of ZnO:Pt films.

An Experimental Study on Characteristics of Soot by Pyrolysis of Fuel with Different Sulfur Contents. (연료의 황 함량에 따른 열분해 매연입자 특성화의 실험적 연구)

  • Lee, Seunghoon;Lim, Sangchul;Ahn, Teakook;Nam, Younwoo;Park, Sunho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.261-264
    • /
    • 2015
  • Soot particles of diesel and bunker-A with different sulfur contents were generated by pyrolysis with varying conditions of fuel flow rate and residence time in the ceramic tube at $1300^{\circ}C$. TEM and particle size analyzer were used for analysing the primary and the secondary particle size distributions. The results showed that the sulfur content in fuel influences soot inception while the fuel concentration and residence time affects the growth of incepted soot particles.

  • PDF

Comparision of Biochar Properties From Biomass produced by Slow Pyrolysis (저속열분해를 통한 바이오매스 부산물의 바이오촤 특성 비교 분석)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook;Gang, Ki Seop;Yang, Won;Jung, Jin-Ho;Hyun, Seunghun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.69-72
    • /
    • 2013
  • This study investigates the characteristics of biochar by slow pyrolysis at $500^{\circ}C$ for various biomass residues. Six biomass materials were tested: Tree bark, Tree stem, bagasse, cocopeat, paddy straw and palm kernel shell. In the biochar yield, the effect of ash in the raw biomass was significant for paddy straw. Excluding the ash content, the timber bark, bagasse and paddy straw had a similar biochar yield of 26-29 wt.%. Tree stem and bagasse had well developed pores in a wide size range and large surface area over $200m^2/g$. Cocopeat and PKS has significantly higher biochar yield due to the increased content of lignin, but the development of intra-particle pores and microscopic surface area was very poor. The elemental composition, pH and other properties of the biochar samples were also compared.

  • PDF