• Title/Summary/Keyword: Pyro-shock

Search Result 31, Processing Time 0.027 seconds

Development of Ball Type Separation Bolt (Ball Type 분리볼트 개발)

  • Kim, Dong-Jin;Kang, Won-Kyu;Lee, Yeung-Cho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.243-246
    • /
    • 2006
  • Most of the guided weapons have been kept and transferred at the launching tube and fired in case of necessity in these day. Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. When we attached the guided weapons to launching tube we usually has used explosive bolt. Explosive bolts have been used explosives when they had to be separated. But when they are separated there are some bad effects; a flame, fragments and pyre-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems we invented ball type bolt. Unlike explosive bolt, ball type bolt is separated without a flame, fragments and pyre-shock. And it also has a good mechanical properties as much as those of explosive bolt.

  • PDF

Rapid Initial Alignment Method of Inertial Navigation System Using Adaptive Time Delay Compensation (적응형 시간지연 보상을 통한 관성항법장치 급속초기정렬기법)

  • Lee, Hyung-Sub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.433-439
    • /
    • 2018
  • In this paper, a SDINS(strapdown inertial navigation system) rapid initial alignment technique with adaptive time delay compensation is proposed. The proposed method consists of two steps. In first step, misalignment and data latency are estimated by conducting pre-transfer alignment. Then, hybrid alignment is designed to rapidly find the misalignment changes induced by pyro-shock. To improve the performance of hybrid alignment, adaptive time delay compensation method is suggested. We verify the performance improvement of the proposed alignment scheme comparing with the conventional transfer alignment method by van test. The test result shows that the proposed alignment technique improves alignment performance.

LAUNCH ENVIRONMENT TEST OF KOMPSAT-1 SATELLITE

  • Lee, Sang-Seol;Kim, Hong-Bae;Moon, Sang-Mu;Woo, Sung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1234-1239
    • /
    • 2000
  • KOMPSAT-1(Korea Multi-Purpose Satellite), which opened the space era in Korean peninsula, was developed from 1994 and launched successfully in December of 1999 at VAFB, USA. This paper presents a launch environment test of KOMPSAT and a short description of environment test facilities at Korea Aerospace Research Institute as well. The launch environment tests of KOMPSAT-1 satellite, such as vibration, acoustic, pyro-shock and mass properties measurement test, were performed during its system integration and test period. The participating engineers concluded that KOMPSAT-1 satellite would withstand environment during its launch period.

  • PDF

Functional Verification of Engineering Model of Non-explosive Shockless Holding and Release Mechanism Using Heating Wire Cutting Method (열선 절단 방식을 적용한 비폭발식 무충격 구속분리장치 EM의 기능검증)

  • Oh, Hyun-Ung;Jeon, Su-Hyeon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.401-406
    • /
    • 2013
  • Non-explosive shockless holding and release mechanism for a nano class small satellite application has been proposed and investigated. The great advantages of the mechanism are a much lower shock level and larger constraint force than the conventional mechanism using pyro and the heating wire cutting mechanism which has been generally applied to the cube satellite program. To investigate the effectiveness of the mechanism design, EM mechanism was developed and tested to verify the basic function of the mechanism. The test results indicate that the proposed mechanism is well functioning as the mechanism design intends.

A Study of Separation Mechanism in Ball Type Separated Bolt (볼타입 분리볼트의 분리현상 연구)

  • Lee, Yeung-Jo;Koo, Song-Hoe;Jang, Hong-Bin;Lee, Bang-Eop
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.2
    • /
    • pp.62-67
    • /
    • 2011
  • Launching tube is a kind of case to protect the guided weapons from external environments and conducted as a guide when they are fired. The guided weapons have been firmly kept at the launching tube and transferred, and would be separated at the required time when they are fired To meet the aim, it has been used explosive bolts which are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. When the explosive bolt is ignited, there are some bad effects; a flame, fragments and pyro-shock. Because of these bad effects there are many restriction to use bolt as joining devices to precision guided weapons. To solve these problems, the aim of the present work is to invent the ball-type separation bolt which is a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. A standard pressure cartridge can moreover be easily integrated inside the device according to the present work and this with no modification to its structure. The present work was represented quantitatively the margin of separation safety and analysed separation mechanism in ball type separating bolt to perform the dynamic separation test.

The Study of the Characteristic of Pyrotechnic Separation Devices Using Missile System and Space Craft (우주발사체 및 미사일 시스템에 이용되는 파이로테크닉 분리장치의 특성에 관한 연구)

  • Lee, Yeung-Jo;Kim, Dong-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.208-211
    • /
    • 2007
  • Separation Devices have two functions. These two functions are to bond and to separate two bodies. This paper is about separation devices which use explosives to separate their bodies. Explosive bolt is separated with two bodies when the explosives in the body detonated. The good things of explosive bolt are that it has simple operational system and it is made of few parts. But it has side effects; fragment and pyre-shock. To avoid these side effects gas expansion separation(GES) bolt and pressure cartridge actuation separation(PAS) devices are invented. These use pressure to separate their bodies. The pressure is generated when explosives are burned. But the sizes of PAS devices are bigger than explosive bolts. And GES bolt has a mechanically lower bonding ability than that of explosive bolt. When you design separation devices, it is recommended to know operational system and characteristics of separation devices, to design best one.

  • PDF

Surface Gas Temperature of Turbine Blade by Hot Gas Stream of Pyro Starter in Operation Condition (파이로 시동기의 고온 가스에 의한 터빈 블레이드의 표면 가스온도 발달과정 해석)

  • Lee, In-Chul;Kim, Jin-Hong;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.63-67
    • /
    • 2007
  • The high pressure turbopump carries out supplying the oxidizer in the liquid propulsion rocket in the combustion chamber. Because an LRE requires a very short starting time , the turbine at the turbopump experiences high torque that was produced by the high pressure and the high temperature. The purpose of this study is to evaluate a turbine blade surface temperature profiles at initial starting 0 ${\sim}$ 0.5 sec. Using $Fine^{Tm}$/turbo, three dimensional Baldwin-Lomax turbulence models are used for numerically analysis. The turbine is composed of 108 blades total, but only 7 rotors were considered because of periodic symmetry effect. Because of interaction with a bow shock on the suction surface, the boundary layer separates from suction surface at inner area of turbine blade. The averaged temperature of the turbine blade tip at 1000 rpm is higher than that of 9000 rpm. Especially at 1000 ${\sim}$ 9000 rpm, temperatures increases on the hub side of the turbine blade tip. Moreover at 9000 rpm, the temperatures from the hub to the shroud of the blade tip increase as well.

  • PDF

Development of Flight Model of Segmented Nut Type Holding and Release Mechanism Using Burn Wire Cutting Method for On-orbit Verification (열선절단형 분리너트식 구속분리장치의 궤도검증을 위한 비행모델 개발)

  • Lee, Myeong-Jae;Lee, Yong-Keun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.911-915
    • /
    • 2014
  • Pyrotechnic devices are widely used for space appendages. However, a cube satellite requirements do not permit the use of explosive pyrotechnic device. A nichrome burn wire release has typically been used for holding and release of deployable appendages of the cube satellite due to its simplicity and low cost. However, relatively low mechanical constraint force and system complexity for application of multi-deployable systems are disadvantages of the conventional mechanism. To overcome these drawbacks, we have developed a segmented nut type holding and release mechanism based on the nichrome burn wire release. The great advantages of the mechanism are much lower shock level and larger constraint force than the conventional mechanism using pyro. Flight model for on-orbit verification was developed and verified through release function test, vibration test and thermal vacuum test.

  • PDF

Fabrication of Porous Reaction Bonded Silicon Carbide with Multi-Layered Pore Structures (다층 기공구조를 갖는 다공성 반응소결 탄화규소 다공체 제조)

  • Cho, Gyoung-Sun;Kim, Gyu-Mi;Park, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.534-539
    • /
    • 2009
  • Reaction Bonded Silicon Carbide(RBSC) has been used for engineering ceramics due to low-temperature fabrication and near-net shape products with excellent structural properties such as thermal shock resistance, corrosion resistance and mechanical strength. Recently, attempts have been made to develop hot gas filter with gradient pore structure by RBSC to overcome weakness of commercial clay-bonded SiC filter such as low fracture toughness and low reliability. In this study a fabrication process of porous RBSC with multi-layer pore structure with gradient pore size was developed. The support layer of the RBSC with multi-layer pore structure was fabricated by conventional Si infiltration process. The intermediate and filter layers consisted of phenolic resin and fine SiC powder were prepared by dip-coating of the support RBSC in slurry of SiC and phenol resin. The temperature of $1550^{\circ}C$ to make Si left in RBSC support layer infiltrate into dip-coated layer to produce SiC by reacting with pyro-carbon from phenol resin.

Analysis of the Failure Stress in Pyrotechnically Releasable Mechanical Linking Device

  • Lee, Yeung-Jo;Kim, Dong-Jin;Kang, Won-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.813-822
    • /
    • 2008
  • The present work has been developed the interpretation processor including analysis of the failure stress in pyrotechnically releasable mechanical linking device, which has the release characteristic without fragmentation and pyro-shock, using SoildWorks, COSMOS Works and ANSYS programs. The aim of the invention is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyrotechnically releasable mechanical linking device according to the invention is simple, compact and inexpensive in structure. It is simple to implement and permit the use of only a reduced quantity of pyrotechnic composition, such composition possibly being devoid of any primary explosive at all. The present work is only focused on the design of structure and the material characteristics. To analyze the fracture morphology resulted from tensile test in the different ball type bolts, the present work has been performed to estimate the failure stress of material and to make the same result from tensile test. The failure stress of SUS 630 in ductile material is approximately 1050 Mpa. The failure stress of SUS 420 in brittle material is about 1790 Mpa. Among the models used the ductile material, the model 6 is suitable a design of structure compared to that of other models. The use of this interpretation processor developed the present work could be extensively helped to estimate the failure stress of material having a complex geometry such as the ball type bolt

  • PDF