• Title/Summary/Keyword: Pyrite oxidation

Search Result 51, Processing Time 0.019 seconds

The Potential Acid Sulfate Soils Criteria by the Relation between Total-Sulfur and Net Acid Generation (전황함량과 순산발생능력의 상관관계를 통한 잠재특이산성토양 기준 설정)

  • Moon, Yonghee;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Park, Chan-Won;Song, Kwan-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.904-909
    • /
    • 2012
  • Acid sulfate soil (ASS) and potential acid sulfate soil (PASS) are distribution in worldwide and originate from sedimentary process, volcanic activity, or metamorphism and are problematic in agriculture and environmental due to their present and potential acidity developed by the oxidation. The PASS was defined as soil materials that had sulfidic layer more than 20 cm thick within 4 m of the soil profile and contained more than 0.15% of total-sulfur (T-S). A tentative interpretative soil classification system was proposed weak potential acid sulfate (T-S, 0.15-0.5%), moderate potential acid sulfate (T-S, 0.5-0.75%) and strong potential acid sulfate (T-S, more than 0.75%). PASS due to excess of pyrite over soil neutralizing capacity are formed. It provides no information on the kinetic rates of acid generation or neutralization; therefore, the test procedures used in acid base account (ABA) are referred to as static procedures. The net acid generation (NAG) test is a direct method to measure the ability of the sample to produce acid through sulfide oxidation and also provides and indication. The NAG test can evaluated easily whether the soils is PASS. The samples are mixed sandy loam and the PAS from the hydrothermal altered andesite (1:3, 1:8, 1:16, 1:20, 1:40, 1:80 and 1:200 ratios) in this study. We could find out that the NAG pH of the soil containing 0.75% of T-S was 2.5, and that of the soil has 0.15% of T-S was 3.8. NAG pH test can be proposed as soil classification criteria for the potential acid sulfate soils. The strong type has NAG pH of 2.5, the moderate one has NAG pH of 3.0, and the weak one has NAG pH of 3.5.

Characterization and Two-Phase Neutralization of Acid Mine Drainage (두 단계 중화적정에 의한 산성 광산 유출수 중의 중금속 제거)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae
    • Applied Biological Chemistry
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 1999
  • Acid mine drainage (AMD) results from sulfuric acid produced by the oxidation of pyrite, and contains large amounts of toxic elements. In the neutralization of AMD, iron and aluminum hydroxides are the major precipitates and those two can be separated with two-phase neutralization. In this study, removal of toxic elements by the two phases of neutralization was investigated using an AMD collected from the abandoned antimony mine in Gachang, Taegu. Contents of As, Cd, Cu, Mn, Pb and Zn in the AMD were higher than the criteria of river water quality or permissible waste water discharge. In the first phase, the AMD was neutralized to several % (25, 50, 75, 100, and 125) of $Fe(OH)_3$ equivalence point with solid $Ca(OH)_2$. In the second phase, the supernatant of the first phase neutralization was titrated to pH 7.5. After neutralization of the AMD to 100% of the $Fe(OH)_3$, equivalence point, most of Fe and Pb were removed but levels of As, Cd, Cu, Ni, Mn, and Zn were not reduced in the supernatant solution. In the second phase neutralization, levels of those toxic elements in the supernatants dropped below the wastewater discharge or river water quality criteria. This result suggests that the precipitate formed in the first phase of the neutralization process may be disposed without any special cares. Thus the two-phase neutralization scheme can reduce the cost of disposing precipitates containing toxic metals in comparison with the monophase neutralization scheme.

  • PDF

Damage Conditions and Assessment for Cut Slope Structures due to Acid Rock Drainage (산성암반배수에 의한 절취사면 구조물의 피해 현황과 평가)

  • Lee Gyoo Ho;Kim Jae Gon;Park Sam-Gyu;Lee Jin-Soo;Chon Chul-Min;Kim Tack Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.83-92
    • /
    • 2005
  • The aim of this study was to investigate damage conditions of cut slope structures due to acid rock drainage (ARB) and to assess the acid production potential of various rocks. Acid rock drainage is produced by the oxidation of sulfide minerals contained in coal mine zone and mineralization belt of Pyeongan supergroup and Ogcheon group, pyrite-bearing andesite, and Tertiary acid sulfate soils in Korea. Most of cut slopes producing ARB have been treated with shotcrete to reduce ARD. According to the field observations, ARD had an adverse effect on slope structures. The corrosion of shotcrete, anchors and rock bolts and the bad germination and growth diseases of covering plants due to ARD were observed in the field. The concentration of heavy metals and pH of ARD from cut slope exceeded the environmental standard, indicating a high potential of environmental pollution of surrounding soil, surface water and ground water by the ARD. According to acid base accounting (ABA) of the studied samples, hydrothermally altered volcanic rocks, tuffs, coaly shales, tailings of metallic mine had a relatively high potential of acid production but gneiss and granite had no or less acid production potential. It is expected that the number of cut slopes will increase hereafter considering the present construction trend. In order to reduce the adverse effect of ARD in construction sites, we need to secure the data base for potential ARD producing area and to develop the ARD reduction technologies suitable.

Groundwater and Stream Water Acidification and Mixing with Seawater, and Origin of Liquefaction-Expelled Water in a Tertiary Formation in the Pohang Area (포항지역 제3기층내 지하수와 지표수의 산성화 및 해수혼합, 그리고 액상화 유출수 기원에 관한 연구)

  • Jeong, Chan Ho;Ou, Song Min;Lee, Yu Jin;Lee, Yong Cheon;Kim, Young Seog;Kang, Tae Seob
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.559-569
    • /
    • 2022
  • This study investigated the acidification and mixing with seawater of groundwater, stream water, and reservoir water in the Hunghae area of Pohang City, as well as the source of water expelled to the stream by liquefaction induced by the Pohang earthquake on 15 November 2017. Geologically, the area consists of Tertiary sedimentary rocks. We collected six samples of groundwater, five of reservoir water, four of stream water, two of liquefaction water, and one of seawater to analyze the chemical composition and stable isotopes (𝛿D and 𝛿18O). Gogkang Stream flows eastward through the central part of the study area into the East Sea. The groundwater and reservoir water in the lower part of the stream are acidic (pH < 4), have a Ca(Mg)-SO4 composition, and high concentrations of Al, Fe, and Mn, likely due to the oxidation of pyrite in Tertiary rocks. The groundwater in the upper part of the stream have a Ca(Na)-HCO3(Cl) composition, indicating the mixing of seawater with the stream water. The 𝛿D and 𝛿18O isotope data indicate the isotopic enrichment of reservoir water by evaporation. Based on the chemical and isotopic data, it is inferred that the two samples of liquefaction water originated from alluvium water in a transition zone with stream water, and from deep and shallow groundwaters that has been infiltrated by seawater, respectively.

A Review of the Influence of Sulfate and Sulfide on the Deep Geological Disposal of High-level Radioactive Waste (고준위방사성폐기물 심층처분에 미치는 황산염과 황화물의 영향에 대한 고찰)

  • Jin-Seok Kim;Seung Yeop Lee;Sang-Ho Lee;Jang-Soon Kwon
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.421-433
    • /
    • 2023
  • The final disposal of spent nuclear fuel(SNF) from nuclear power plants takes place in a deep geological repository. The metal canister encasing the SNF is made of cast iron and copper, and is engineered to effectively isolate radioactive isotopes for a long period of time. The SNF is further shielded by a multi-barrier disposal system comprising both engineering and natural barriers. The deep disposal environment gradually changes to an anaerobic reducing environment. In this environment, sulfide is one of the most probable substances to induce corrosion of copper canister. Stress-corrosion cracking(SCC) triggered by sulfide can carry substantial implications for the integrity of the copper canister, potentially posing a significant threat to the long-term safety of the deep disposal repository. Sulfate can exist in various forms within the deep disposal environment or be introduced from the geosphere. Sulfate has the potential to be transformed into sulfide by sulfate-reducing bacteria(SRB), and this converted sulfide can contribute to the corrosion of the copper canister. Bentonite, which is considered as a potential material for buffering and backfilling, contains oxidized sulfate minerals such as gypsum(CaSO4). If there is sufficient space for microorganisms to thrive in the deep disposal environment and if electron donors such as organic carbon are adequately supplied, sulfate can be converted to sulfide through microbial activity. However, the majority of the sulfides generated in the deep disposal system or introduced from the geosphere will be intercepted by the buffer, with only a small amount reaching the metal canister. Pyrite, one of the potential sulfide minerals present in the deep disposal environment, can generate sulfates during the dissolution process, thereby contributing to the corrosion of the copper canister. However, the quantity of oxidation byproducts from pyrite is anticipated to be minimal due to its extremely low solubility. Moreover, the migration of these oxidized byproducts to the metal canister will be restricted by the low hydraulic conductivity of saturated bentonite. We have comprehensively analyzed and summarized key research cases related to the presence of sulfates, reduction processes, and the formation and behavior characteristics of sulfides and pyrite in the deep disposal environment. Our objective was to gain an understanding of the impact of sulfates and sulfides on the long-term safety of high-level radioactive waste disposal repository.

Occurrence and Species of Arsenic in the Groundwater of Ulsan Area (울산지역 지하수중 비소의 산출 및 존재형태)

  • Yun Uk;Cho Byong-Wook;Sung Kyu-Youl
    • Economic and Environmental Geology
    • /
    • v.37 no.6 s.169
    • /
    • pp.657-667
    • /
    • 2004
  • Arsenic was detected in the 29 water samples out of the 46 groundwaters located in the Ulsan metropolitan area and it's concentration ranges from $<0.1\;to\;72{\mu}g/L$. Among them the arsenic concentrations of three samples are over domestic drinking-water requirements $(50{\mu}g/L)$, and those of 10 samples are more than WHO MCLs, $10{\mu}g/L.$. High arsenic groundwater were recognized in the two region; one was near the tectonic line, especially Ulsan iron mine at Dalcheunri and the other was around Hyomundong distributed Jeongia conglomerate. It is estimated that the former is originated from pyrite oxydation type, oxygenated redox, whilst the latter is resulted from oxidation of reducted FeOOH. The species of arsenic in groundwater is in pentavalent arsenic, $H_2AsO_4^-,\;HAsO4_^{-2}$ near tectonic line, and trivalent arsenic, $H_3AsO_3$ around Hyomundong.

Hydrogeology and Water Chemistry of the Friar Tuck Abandoned Coal Mine Site, Indiana, USA (미국 인디아나주 Friar Tuck 폐탄광의 수리지질 및 수질)

  • Park, Jung-Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.70-79
    • /
    • 1996
  • The Friar Tuck Abandoned Coal Mine site is one of the most complexly disturbed areas in the midwestern United States. The deposits of gob and tailings contain high concentrations of pyrite, whose oxidation contributes to the acidification of soil and water and prevents the growth of vegetation. In an effort to quantitatively evaluate the effects of reclamation techniques, detailed monitoring program was performed. Water samples were collected from surface water, groundwater, and pore water from the unsaturated zone during a period of five years. According to the results, The spoil deposits are a relatively minor source of contamination and gob piles are the source of severe contamination to surface water and groundwater. But, loess and till beneath the gob piles effectively prevent the contaminated water migration from the source. Surface layers of the gob piles and the tailing deposits are less toxic than the interior of the deposits as a consequence of weathering over several decades. Acid mine drainage is in a post-peak stage and acid formation potential is probably situated in the unsaturated zone of refuse.

  • PDF

Epithermal Gold-Silver Mineralization and Depositional Environment of Carbonate-hosted Replacement Type Baegjeon Deposits, Korea (탄산염암 층준교대형 백전광상의 천열수 금-은 광화작용과 생성환경)

  • Lee, Chan Hee;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 1996
  • The Baegjeon Au-Ag and Sb deposits, small of disseminated-type gold deposits are formed as a result of epithermal processes associated a shallow-seated Cretaceous Yeogdun granitoids intrusion. The orebodies are formed by the replacement of carbonate minerals in thin-bedded oolitic limestone beds favorable for mineralization within the upper-most Cambrian Pungchon Limestone Formation. The mineralization can be recognized one stage, ore minerals composed of base metal sulfides, electrum, AgSb-S, Ag-Cu-S, and Sb-S minerals. Gold-bearing minerals consist of electrum and submicroscopic invisible gold in pyrite and arsenopyrite. The composition of electrums ranges from 33.58 to 63.48 atomic % Ag. Fluid inclusion studies reveal that ore fluids were low saline $NaCl-CO_2-H_2O$ system. Temporary fluid mixing and boiling occured in later stage. Fluid inclusion data indicates the homogenization temperatures and salinities of NaCl eqivalent wt% were 176 to $246^{\circ}C$ and from 0.0 to 4.8 wt%, respectively. And $-logfs_2$, of mineralization obtained by thermodynamic considerations as 12.4 to 13.8 atm. The ${\delta}^{34}S_{H_2S}$, values of hydrothermal sulfides were calculated to be 6.8 to 10.2‰ which was of sedimentary origin. The ${\delta}^{18}O_{H_2O}$ and ${\delta}^{13}C_{CO_2}$, range from -3.9 to 9.6‰, from -1.1 to -2.2‰, and ${\delta}D$ range from -89 to -118‰, respectively. The Au deposition during mineralization seems to have occurred as a result of decrease of temperature, $fs_2$, $fo_2$, and pH probably due to oxidation by meteoric water mixing, which destabilized original $Au(HS)^-{_2}$. The mineralization of the Baegjeon deposits is similar to the Carlin-type deposits characterized by sediments-hosted epithermal bedding replacement disseminated gold deposits.

  • PDF

Changes in Compositions of Effluent Water from Mine Wastes in Danbung Mine, Munkyung (문경 단붕탄광 폐석장 유출수의 조성변화)

  • 지상우;김선준;안지현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.169-174
    • /
    • 1997
  • Stream water and precipitates were analyzed for metal contents to evaluate the compositional changes of effluent water from mine waste Danbung mine located in the vicinity of Munkyung. Samples were collected before and after the rainy season in 1995 and before the rainy season in 1997 to observe seasonal variation and the charge of the status of pollution after the lapse of two years. Increased metal contents and lowered pH values after rainy season are thought of the results of flushing of oxidation products of pyrite accumulated during dry season in mine wastes. The results of two years later showed that pollution by AMD have progressed more seriously in that pH has been lowered by one order and metal contents increased about twice. The spatial distribution of various Fe, Al hydroxides and sulfates occurring as red and white precipitates also changed. Red precipitates occurred at stream bed in longer distance after two years and white precipitates occurred far down from the mine wastes where no precipitates had been observed 1995. And metal contents in sediments also increased up to more than ten times.

  • PDF

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.