• Title/Summary/Keyword: Pyeongtaek port

Search Result 65, Processing Time 0.021 seconds

A Study on the Improvement for Port Placement of Response Vessel (방제선 배치 항만의 개선 방안)

  • Jang, Duck-Jong;Kim, Dae-Jin;Kim, Woo-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.810-819
    • /
    • 2017
  • The purpose of this study is to evaluate port use and the distribution of risk factors in 15 major ports in Korea, delineating the risk of each port after classifying the ports into four risk groups based on estimated risks. The placement of response vessels is then analyzed accordingly. Based on the results, danger was estimated to be especially high in ports where large-scale petrochemical facilities are located, such as Yeosu Gwangyang ports (1.85), Ulsan port (1.33) and Daesan port (1.25). The ports showing the next highest degree of danger were Pusan (0.95) and Incheon (0.83), which have significant vessel traffic, followed by Mokpo (0.71) and Jeju (0.49), which expanded their port facilities recently and saw an increase in large vessel traffic. Next is Masan (0.44), for which many fishing permits in the vicinity. When the relative ratios of each port were graded based on the Yeosu Gwangyang Ports, which showed the highest risk values, and risk groups were classified into four levels, the highest risk groups were Yeosu Gwangyang, Ulsan, Daesan and Pusan, with Incheon, Mokpo, Jeju, and Masan following. Pyeongtaek Dangjin, Pohang, Gunsan, and Donghae Mukho were in the mid-range danger group, and the low risk groups were Samcheonpo, Okgye, and Changsungpo. Among these, all response vessel placement ports specified by current law were above the mid-range risk groups. However, we can see that ports newly included in mid-range risk group, such as Mokpo, Jeju, and Donghae Mukho, were excluded from the pollution response vessel placement system. Therefore, to prepare for marine pollution accidents these three ports should be designated as additional response vessel placement ports.

The Implementation of the Pyeongtaek Port-oriented Logistics Network Strategy in Kyonggi Province by an Empirical Analysis on the Domestic Logistic system (국내물류체계의 실증분석을 통한 평택항 중심의 경기지역 물류네트워크 구축방안)

  • Park, Yeong-Tae;Gang, Seung-U
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.02a
    • /
    • pp.327-353
    • /
    • 2005
  • 본 연구는 동북아 물류활성화를 위해 지정학적으로 환황해권의 유리한 위치와 우리나라의 경제중심지인 수도권을 배후로 하고 있는 평택항을 중심으로 한 경기지역의 물류네트워크 전략에 대한 연구이다. 본 연구에서는 국내 수출입 컨테이너물동량의 유통채널의 분석과 물류네트워크 방식의 검토 및 사례분석을 통해 경기지역의 특성에 맞는 물류네트워크 방식에 대해 연구하였다. 따라서 하드웨어 개념인 각 거점별 물류시설간의 물류채널인 네트워크 구성방안에 대해 언급하였고 여기서 대권역과 소권역으로 분류하여 2단계 혼합물류네트워크 방식을 소개하였으며, 이러한 각 거점물류시설간의 효율적인 운영을 위해 가장 중요하다고 사료되어지는 물류정보시스템의 구축방안에 대해 언급하였다.

  • PDF

Dispersion of Maritime Air Pollutants from Harbor Area into Major Port Cities Considering Characteristics of Local Wind Circulation in Korea -A Case Study of Sea and Land Breezes during Summer- (지역 순환풍 발생 특성 이해를 통한 국내 주요항만 발생 대기오염물질의 항구도시 영향 범위 분석 -여름철 해륙풍 모사를 중심으로-)

  • Kwon, Yongbum;Cho, Inhee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.721-730
    • /
    • 2021
  • Maritime air pollutants around port cities have gained a great deal of attention due to their direct impacts on regional air quality. This study aims to determine the geographical properties of sea/land breezes in different areas to discover overall ranges of maritime emission dispersion. The HOTMAC-RAPTAD modeling program was used to simulate regional-scale air dispersion considering non-linear and unsteady states during the general summer period for the target areas of the Yellow Sea (Incheon Port and Pyeongtaek·Dangjin Ports), archipelago region (Mokpo Port), South and East Sea (Busan and Masan Ports) and East Sea with mountainous area (Donghae·Mukho Ports). The resulting dispersion lengths of vessel emissions into the onshore regions around the target ports shed light on portal air quality management, because vessel emissions from the Incheon, Mokpo, Busan, and Donghae·Mukho ports were transported 27-31km (Western Seoul), 21-24km (Southern Muan), 20-26km (Gimhae and Yangsan), and 22-25km (Taebeak Mountains), respectively. Therefore, the results of this study provide useful data for regional air quality management and marine air pollution mitigation to improve the sustainability of port cities.

Numerical Hydrodynamic Modeling Incorporating the Flow through Permeable Sea-Wall (투수성 호안의 해수유통을 고려한 유동 수치모델링)

  • Bang, Ki-Young;Park, Sung Jin;Kim, Sun Ou;Cho, Chang Woo;Kim, Tae In;Song, Yong Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.2
    • /
    • pp.63-75
    • /
    • 2013
  • The Inner Port Phase 2 area of the Pyeongtaek-Dangjin Port is enclosed by a total of three permeable sea-walls, and the disposal site to the east of the Inner Port Phase 2 is also enclosed by two permeable sea-walls. The maximum tidal range measured in the Inner Port Phase 2 and in the disposal site in May 2010 is 4.70 and 2.32 m, respectively. It reaches up to 54 and 27%, respectively of 8.74 m measured simultaneously in the exterior. Regression formulas between the difference of hydraulic head and the rate of interior water volume change, are induced. A three-dimensional numerical hydrodynamic model for the Asan Bay is constructed incorporating a module to compute water discharge through the permeable sea-walls at each computation time step by employing the formulas. Hydrodynamics for the period from 13th to 27th May, 2010 is simulated by driving forces of real-time reconstructed tide with major five constituents($M_2$, $S_2$, $K_1$, $O_1$ and $N_2$) and freshwater discharges from Asan, Sapkyo, Namyang and Seokmoon Sea dikes. The skill scores of modeled mean high waters, mean sea levels and mean low waters are excellent to be 96 to 100% in the interior of permeable sea-walls. Compared with the results of simulation to obstruct the flow through the permeable sea-walls, the maximum current speed increases by 0.05 to 0.10 m/s along the main channel and by 0.1 to 0.2 m/s locally in the exterior of the Outer Sea-wall of Inner Port. The maximum bottom shear stress is also intensified by 0.1 to 0.4 $N/m^2$ in the main channel and by more than 0.4 $N/m^2$ locally around the arched Outer Sea-wall. The module developed to compute the flow through impermeable seawalls can be practically applied to simulate and predict the advection and dispersion of materials, the erosion or deposion of sediments, and the local scouring around coastal structures where large-scale permeable sea-walls are maintained.

Analysis on the navigation risk factors in Gunsan coastal area (1) (군산 연안 해역 항행 위해 요소 분석 (1))

  • JUNG, Cho-Young;YOO, Sang-Lok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.286-292
    • /
    • 2017
  • The Coastal VTS will be continuously constructed to prevent marine traffic accidents in the coastal waters of the Republic of Korea. In order to provide the best traffic information service to the ship operator, it is important to understand the navigation risk factor. In this study, we analyzed the navigational hazards of Gunsan coastal area where the coastal VTS will be constructed until 2020. For this purpose, major traffic flows of merchant ships and density of vessels engaged in fishing were analyzed. This study was conducted by Automatic Identification System (AIS) and Vessel Pass (V-PASS) data. The grid intervals are 10 minute ${\times}$ 10 minute (latitude ${\times}$ longitude) based on the section of the sea. A total of 30 sections were analyzed by constructing a grid. As a result of the analysis, the major traffic flows of the merchant vessels in the coastal area of Gunsan were surveyed from north to south toward Incheon, Pyeongtaek, Daesan, Yeosu, Pusan and Ulsan, and from east to west in the port of Gunsan Port, 173-3, 173-6, 173-8, 183-2, 183-5, 183-8, 183-3, 184-1 and 184-2. As a result of the study, the fishing boats in Gunsan coastal area mainly operated in spring and autumn. On the other hand, the main traffic flow of merchant ships and the distribution of fishing vessels continue to overlap from March to June, so special attention should be paid to the control during this period.

Assessment of the ozonation against pathogenic bacteria in the effluent of the quarantine station

  • Park, Seon Yeong;Kim, Joo Han;Kim, Chang Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated how ozone treatment can successfully inactivate pathogenic bacteria in both artificial seawater and effluents discharged from the fishery quarantine station in Pyeongtaek Port, Korea. Vibrio sp. and Streptococcus sp. were initially inoculated into the artificial seawater. All microbes were almost completely inactivated within 10 min and 30 min by injecting 6.4 mg/min and 2.0 mg/min of ozone, respectively. It was discovered that the water storing Pleuronichthys, Pelteobagrus, and Cyprinus imported from China contained the indicator bacteria, Vibrio sp., Enterococcus sp., total coliforms, and heterotrophic microorganisms. Compared to the control, three indicator bacteria were detected at two to six times higher concentrations. The water samples displayed a diverse microbial community, comprising the following four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Almost all indicator bacteria were inactivated in 5 min at 2.0 mg/min of ozonation; comparatively, 92.9%-98.2% of the less heterotrophic microorganisms were deactivated within the same time period. By increasing the dosage to 6.4 mg/min, 100% deactivation was achieved after 10 min. Despite the almost complete inactivation of most indicator bacteria at high doses after 10 min, several bacterial strains belonging to the Proteobacteria have still been found to be resistant under the given operational conditions.

A Study on Reported Status and Management Plan of Marine Facilities in Korea 2. On the Basis of Region and Type of Facilities (국내 해양시설의 신고 현황과 관리 방안에 관한 연구 2. 지역별 및 시설종류별 현황을 중심으로)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.275-285
    • /
    • 2010
  • Present state of nationwide marine facilities reported to 12 regional maritime affairs and port offices of MLTM in Korea for two years 2008 and 2009 was analyzed based on region and type of facilities, and national management plan was proposed in this study. As of the end of 2009, 8 types of marine facilities were reported to Yeosu regional maritime affairs and port office, while only 3 types of facilities were reported to Pohang, Daesan and Jeju regional offices, respectively. Oil and noxious liquid substances storage facilities belonged in the type of facility which was reported to all of 12 regional offices, and ranged from 11 facilities reported to Pyeongtaek regional office to the respective 38 facilities to Yeosu and Masan regional offices. In pollutants storage facilities, 4 facilities were reported to Masan regional office, 2 facilities to Donghae and Mokpo regional offices, respectively, 1 facility to Yeosu, Gunsan and Pyeongtaek regional offices, respectively, and none of facilities to the other regional offices. Ship construction, repair and scrap facilities belonged in the type of facility which was reported to all of 12 regional offices, and 45% of the facilities were concentrated in Southeastern Sea of Korea centering around Busan and Masan. In cargo handling facilities, 3 facilities were reported to Busan and Masan regional offices, respectively, 1 facility to Daesan regional office, and none of facilities to the other regional offices. In wastes storage facilities, 5 facilities were reported to Ulsan regional office, 4 facilities to Gunsan regional office, 2 facilities to Incheon regional office, 1 facility to Yeosu regional office, and none of facilities to the other regional offices. 65% of nationwide water intake and drainage facilities were concentrated in the areas of Pohang and Mokpo, and 78% of nationwide fishing spots at play were concentrated in the area of Masan. In other marine facilities, 4 facilities were reported to Donghae regional office, 3 facilities to Masan regional office, 2 facilities to Yeosu and Pyeongtaek regional offices, respectively, 1 facility to Incheon and Ulsan regional offices, respectively, and none of facilities to the other regional offices. In integrated marine science base facilities, 3 facilities were reported to Jeju regional office, 1 facility to Yeosu, Ulsan and Gunsan regional offices, respectively, and none of facilities to the other regional offices. The management based on the circumstances of regional offices, the management based on the characteristics of the type of facilities, the amendment of the relevant rules and regulations, facility owner's full knowledge and observance of the relevant rules and regulations with regard to the relevant type of facilities, and positive management actions from national point of view were proposed for national management plans of marine facilities.

An Analysis of Maritime E-commerce Transportation between Korea and China (대중국 전자상거래 해상운송 기종점 분석)

  • Shin, Sung-Ho;Jung, Hyun-Jae;Lee, Dong-Hyon
    • Journal of Korea Port Economic Association
    • /
    • v.34 no.3
    • /
    • pp.93-112
    • /
    • 2018
  • The purpose of this study is to analyze the flow of e-commerce freight transported by maritime transportation for China and to identify the characteristics of cargo by region/item for finding the ways to promote e-commerce export to China. Thus, this study analyzed the e-commerce export and import data on cargo moved via maritime transportation between Korea and China from 2015 to 1Q18, using Origin-Destination(OD) analysis and visualization techniques. The results indicated that the largest number of Chinese e-commerce cargoes were imported at Incheon Port, which has a clearance facility for e-commerce cargo. In the case of Pyeongtaek Port, e-commerce cargo imported from China has transported to Incheon Customs again, causing the inefficiency through the customs clearance process. Unlike the case of e-commerce imports where the final destination is distributed nationwide, e-commerce products exported to China through maritime transportation were found to be mainly confined to Seoul and Gyeonggi provinces, where freight forwarding companies and forwarders are concentrated. In addition, unlike e-commerce import cargoes, e-commerce items exported through maritime transportation were mainly confined to clothing and cosmetics, and export volume was also less than imports. This study provides some possible strategies to increase the volume of freight and to attract export products as follows: i) to diversify products exported to China through e-commerce transshipment, ii) to diversify export items by building the cold chain in e-commerce transport with China.

Setting of Regional Priorities in Preparedness for Marine HNS Spill Accident in Korea by using Concentration Index (집중도 지수를 활용한 HNS 사고 대비 우선지역 선정)

  • Ha, Min-Jae;Jang, Ha-Lyong;Kim, Tae-Hyung;Yun, Jong-Hwui;Lee, Moon-Jin;Lee, Eun-Bang
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.437-444
    • /
    • 2017
  • The concentration of the HNS Accident for each region was confirmed to prepare against an HNS Spill accident by using a Concentration Index which is used to assess industry concentration trend. This is to present the HNS Accident Concentration Index by combining HNS Accident Scale Concentration Index and an HNS Accident Frequency Concentration Index based on the data of marine spill accidents including the HNS accident. Based on the HNS Accident Concentration Index, Ulsan was identified as a top priority region for preparedness, Yeosu, Busan and Taean were identified as priority regions for preparedness, Gunsan, Mokpo, Wando, Incheon, Tongyeong, Pyeongtaek and Pohang were identified as necessary regions for preparedness, Donghae, Boryeong, Buan, Seogwipo, Sokcho, Jeju and Changwon, in which no marine spill accidents occurred, were identified as support regions for preparedness.

Analysis of LDC Message Reception Performance of Korean eLoran Pilot Service according to Modulation Methods (첨단 지상파항법시스템(eLoran) 시범서비스의 LDC 메시지 변조기법에 따른 수신성능 분석)

  • Pyo-Woong, Son;Sak, Lee;Tae Hyun, Fang;Kiyeol, Seo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.525-529
    • /
    • 2022
  • In the eLoran system, the Loran Data Channel (LDC) is used to provide precise timing and positioning. The LDC message can be modulated with the Eurofix method, which modulates the transmission time of the 3rd-8th pulse not used for navigation, and the 9th pulse method, which modulates data using the 9th additional pulse after the existing 8 Loran pulses. In this paper, we analyzed the reception performance of the LDC message transmitted from the eLoran transmitter according to the modulation method. The eLoran testbed transmitter in Incheon was set to transmit LDC messages simultaneously with the 9th pulse modulation method and the Eurofix modulation method. Then, the LDC messages stored in the databases of the eLoran differential stations in Incheon and Pyeongtaek were analyzed in terms of the message reception rate according to the modulation method. Using the navigation aid management ship Inseong No. 1, the range of LDC message reception of actual sea users near Incheon Port was also analyzed. The results of this study are expected to be utilized in the full operational capability service after the eLoran pilot service.