• Title/Summary/Keyword: Pushover curve

Search Result 56, Processing Time 0.023 seconds

The Study for Horizontal Resistance Beyond Yield Condition on Single Pile Using Nonlinear Analysis (비선형 해석 기법을 이용한 항복점 이후의 단일말뚝 수평저항력에 관한 연구)

  • Ryu, Jeong Ho;Cho, Sam Deok;Kim, Dae Hak;Lee, Kwang Wu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2017
  • The behavior of the lateral resistance beyond the yield condition on single pile has been evaluated by comparative analysis. Pushover analysis of single pile has been performed to compare to the results on lateral load test of the pile foundation. The study for the behavior beyond the yield condition on single pile had been performed on the results on the lateral load test and pushover analysis considering mechanical conditions of the ground soil and the pile foundation.

Experimental and analytical investigation on seismic behavior of RC framed structure by pushover method

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.1
    • /
    • pp.125-145
    • /
    • 2011
  • Pushover analysis has gained significant popularity as an analytical tool for realistic determination of the inelastic behaviour of RC structures. Though significant work has been done to evaluate the demands realistically, the evaluation of capacity and realistic failure modes has taken a back seat. In order to throw light on the inelastic behaviour and capacity evaluation for the RC framed structures, a 3D Reinforced concrete frame structure was tested under monotonically increasing lateral pushover loads, in a parabolic pattern, till failure. The structure consisted of three storeys and had 2 bays along the two orthogonal directions. The structure was gradually pushed in small increments of load and the corresponding displacements were monitored continuously, leading to a pushover curve for the structure as a result of the test along with other relevant information such as strains on reinforcement bars at critical locations, failure modes etc. The major failure modes were observed as flexural failure of beams and columns, torsional failure of transverse beams and joint shear failure. The analysis of the structure was by considering all these failure modes. In order to have a comparison, the analysis was performed as three different cases. In one case, only the flexural hinges were modelled for critical locations in beams and columns; in second the torsional hinges for transverse beams were included in the analysis and in the third case, joint shear hinges were also included in the analysis. It is shown that modelling and capturing all the failure modes is practically possible and such an analysis can provide the realistic insight into the behaviour of the structure.

Comparison of Nonlinear Analysis Programs for Small-size Reinforced Concrete Buildings II (소규모 철근콘크리트 건축물을 위한 비선형해석 프로그램 비교 II)

  • Yoo, Changhwan;Kim, Taewan;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.229-238
    • /
    • 2015
  • For small-size reinforce-concrete buildings, Midas Gen, OpenSees, and Perform-3D, which are structural analysis programs that are most popularly used at present, were applied for nonlinear static pushover analysis, and then difference between those programs was analyzed. Example buildings were limited to 2-story frames with irregular shaped walls. Analysis result showed that there were more differences than for frames only and frames with rectangular walls, but it was not so significant. Nevertheless, the capacity curve were different in some buildings, which is attributed to shape and location of walls, and feature of the analysis program. Especially, selection of automatic or manual input in Midas Gen, or nonlinear wall elements in Perform3D can affect the capacity curve and performance of the buildings. Therefore, the program users should understand the feature of the program well, and then conduct performance assessment. The result of this study is limited to low-story buildings so that it should be noted that it is possible to get different results for mid- to high-rise buildings.

Parametric Study on Fragility Curves of Concrete Wall Structures (콘크리트 벽식구조의 취약도 곡선에 대한 변수 연구)

  • Kim, Hyo-Jin;Park, Hong-Gun;Lee, Young-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.101-104
    • /
    • 2006
  • In the past study, the fragility curve for the evaluation of earthquake resistance and earthquake-related damage of concrete bearing wall structures were studied. The fragility curve represents the probability of being in or exceeding a given damage state such as Slight, Moderate, Extensive or Complete structural damage state, and is defined as a cumulative lognormal distribution. Each fragility curve is characterized by median and lognormal standard deviation values. We performed parametric pushover analysis for typical 12 and 24 stories apartment buildings. Based on the results, the fragility curves of concrete wall structures were standardized. Using the fragility curve, engineers can directly evaluate the probability of a damage state to a spectral displacement of interest.

  • PDF

The Response Characteristics of Approximate Nonlinear Methods with RC Dual System (이중골조에 대한 비선형 약산법들의 응답특성)

  • Nam Young-Woo;Kang Pyeong-Doo;Jun Dae-Han;Kim Jae-Ung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.71-78
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear tim history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from the pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to RC dual system and various earthquakes.

  • PDF

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

Nonlinear Static Analysis for Seismic Performance Evaluation of Multi-Span Bridges Considering Effect of Equivalent SDOF Methods (등가단자유도 방법의 영향을 고려한 다경간 교량의 내진성능 평가를 위한 비탄성 정적해석)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.473-484
    • /
    • 2006
  • The capacity spectrum method (CSM) can be used to simply estimate the maximum displacement response of the nonlinear structures. To evaluate seismic performance of multi-span bridges using the CSM, the representative response for structural system should be derived from the multi-degree-of-freedom (MDOF) responses by using the equivalent single-degree-of-freedom (ESDOF) method. The ESDOF method is used to calculate the capacity curve of the structural system from the pushover curves of all piers or structural members estimated by the pushover analysis. In order to evaluate an accuracy of ESDOF methods used in the CSM, the maximum displacements estimated by the CSM incorporating the several ESDOF methods are compared to those by the inelastic time-history analysis for several artificial earthquakes corresponding to the design spectrum.

Finite Element Modeling and Nonlinear Analysis for Seismic Assessment of Off-Diagonal Steel Braced RC Frame

  • Ramin, Keyvan;Fereidoonfar, Mitra
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.1
    • /
    • pp.89-118
    • /
    • 2015
  • The geometric nonlinearity of off-diagonal bracing system (ODBS) could be a complementary system to covering and extending the nonlinearity of reinforced concrete material. Finite element modeling is performed for flexural frame, x-braced frame and the ODBS braced frame system at the initial phase. Then the different models are investigated along various analyses. According to the experimental results of flexural and x-braced frame, the verification is done. Analytical assessments are performed in according to three dimensional finite element modeling. Nonlinear static analysis is considered to obtain performance level and seismic behaviour, and then the response modification factors calculated from each model's pushover curve. In the next phase, the evaluation of cracks observed in the finite element models, especially for RC members of all three systems is performed. The finite element assessment is performed on engendered cracks in ODBS braced frame for various time steps. The nonlinear dynamic time history analysis accomplished in different stories models for three records of Elcentro, Naghan and Tabas earthquake accelerograms. Dynamic analysis is performed after scaling accelerogram on each type of flexural frame, x-braced frame and ODBS braced frame one by one. The base-point on RC frame is considered to investigate proportional displacement under each record. Hysteresis curves are assessed along continuing this study. The equivalent viscous damping for ODBS system is estimated in according to references. Results in each section show the ODBS system has an acceptable seismic behaviour and their conclusions have been converged when the ODBS system is utilized in reinforced concrete frame.

Simplified procedure for seismic demands assessment of structures

  • Chikh, Benazouz;Mehani, Youcef;Leblouba, Moussa
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.455-473
    • /
    • 2016
  • Methods for the seismic demands evaluation of structures require iterative procedures. Many studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis (RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom (MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to provide accurate peak response with those obtained when using the NL-THA analysis. After that, a simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called normalized yield strength coefficient (${\eta}$). In the second application, the proposed procedure is verified against the NL-THA analysis results of two buildings for 80 selected real ground motions.

Seismic demand estimation of RC frame buildings based on simplified and nonlinear dynamic analyses

  • Borzi, B.;Vona, M.;Masi, A.;Pinho, R.;Pola, D.
    • Earthquakes and Structures
    • /
    • v.4 no.2
    • /
    • pp.157-179
    • /
    • 2013
  • Vulnerability studies on the existing building stock require that a large number of buildings is analyzed to obtain statistically significant evaluations of the seismic performance. Therefore, analytical evaluation methods need to be based on simplified methodologies of analysis which can afford the treatment of a large building population with a reasonable computational effort. Simplified Pushover-Based Earthquake Loss Assessment approach (SP-BELA), where a simplified methodology to identify the structural capacity of the building through the definition of a pushover curve is adopted, was developed on these bases. Main objective of the research work presented in this paper is to validate the simplified methodology implemented in SP-BELA against the results of more sophisticated nonlinear dynamic analyses (NLDAs). The comparison is performed for RC buildings designed only to vertical loads, representative of the "as built" in Italy and in Mediterranean countries with a building stock very similar to the Italian one. In NLDAs the non linear and degrading behaviour, typical of the structures under consideration when subjected to high seismic loads, is evaluated using models able to capture, with adequate accuracy, the non linear behaviour of RC structural elements taking into account stiffness degradation, strength deterioration, and pinching effect. Results show when simplified analyses are in good agreement with NLDAs. As a consequence, unsatisfactory results from simplified analysis are pointed out to address their current applicability limits.