• Title/Summary/Keyword: Push-pull inverter

Search Result 50, Processing Time 0.023 seconds

Optimal Design of Thin Type Ultrasonic Motor and Development of Driver (박형 초음파 모터의 최적설계 및 구동 드라이버 개발)

  • Jeong, Seong-Su;Jun, Ho-Ik;Park, Tae-Gone
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.976-981
    • /
    • 2009
  • This paper proposed optimal design and microcontroller driver for driving the thin-type ultrasonic motor. To find the optimal size of the stator, motions of the motor were simulated using ATILA by changing length, width and thickness of the ceramics. Two sinusoidal waves which have 90 degree phase difference were needed for driving the thin-type motor. The thin-type ultrasonic motor driver was composed of microcontroller(Atmega128), push-pull inverter, encoder and AD-converter. Microcontroller generates four square waves which have variable frequency and 25[%] duty ratio in $20{\sim}150$[kHz]. The output signals of microcontroller were converted to sine wave and cosine wave by push-pull inverter and were applied to the thin-type ultrasonic motor. The encoder and AD-converter were used for maintaining speed of the thin-type ultrasonic motor. The AD-converter controlled DC voltage of inverter in accordance with output signal of encoder. Using the driver, characteristics of the motor as speed and torque were measured.

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

A Study on the Operating Characters of the Piezoelectric Inverter to Drive EEFL for a Large Screen (대화면 Backlight를 위한 EEFL 구동용 압전 인버터 운전 특성에 관한 연구)

  • Park, Hong-Sun;Yang, Seung-Hak;Lim, Young-Cheol;Han, Keun-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • In this paper, EEFL, which is advantageous for driving multi-lamp and is able to reduce number of inverter, is used and Piezoelectric Transformer, which is able to reduce self loss, miniaturize and has high boosting transfer rate, and parallel connected to drive multi-lamp. For optimized EEFL driver circuit configuration, a Push-Pull type Piezoelectric inverter was designed and a simulation analysis was performed on the inverter circuit, and by applying multiple different type of driving methode, it is proved that a piezoelectric transformer can be used to manufacture a big screen multi-lamp driving inverter.

Design Procedure of the Inverter for LCD Backlight using Piezoelectric Transformer (압전 변압기를 이용한 LCD 백라이트 구동용 인버터 설계 절차)

  • Kweon Gie-Hyoun;Cho Sung-Koo;Lim Young-Cheol;Yang Seung-Hak
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.577-583
    • /
    • 2004
  • Optimal parameters were selected to design an inverter circuit that drives a cold cathode fluorescent lamp for LCD backlight using a piezoelectric transformer and it was verified by an experiment. In this paper, the applied inverter topologies are a push-pull type and a half-bridge type, and the dimming control methods of these drive system were used a analog control method and a burst control method each other. When change a control voltage from 2.5V to 4.5V in the analog control method, the brightness 0-100% was seen in current 1-6 mA. And, the input/output efficiency were obtained 90.3%. Also, the control performance of 1-6 mA was seen in duty ratio 5-50% in the burst control method, and the input/output efficiency of the designed inverter got 82.1%.

Design of Doherty Amplifier With Push-Pull Structure Using BALUN Transform (발룬을 이용한 푸쉬풀 구조의 도허티 증폭기 설계)

  • 정형태;김성욱;장익수
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.4
    • /
    • pp.51-58
    • /
    • 2004
  • Push-pull structure with balun transformer is presented for load modulation technique which improves the overall efficiency of power amplifier Under the assumption that output impedance of fumed-off amplifier is high, conventional Doherty amplifier is composed of impedance inverter and peaking amplifier, of which operation is controlled by the input power level. In many case, however, impedance of 'off'amplifier is very low due to matching network or parasitic output capacitance. This paper introduces novel load modulation technique which uses low output impedance of 'off'amplifier. Experimental results show that good linearity and efficient!'enhancement of the proposed push-pull structure

Electronic Ballast using Current-Fed Push-Pull Resonant Inverter with Bypassing Capapcitor for Power Factor Correction (전류원 방식 푸시-풀 공진형 인버터로 구성된 단일단 고역률 형광등용 전자식 안정기)

  • 류태하
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.489-492
    • /
    • 2000
  • A novel low-cost simple and unity-power-factor electronic ballast is presented. The proposed electronic ballast employs a bypassing capacitor and load networks composed of ballast capacitors and small charge pump capacitors as power factor correction circuit combined with the secondary winding of the transformer in the self-excited current-fed push-pull resonant inverter(CF-PPRI) resulting in cost-effectiveness and higher efficiency. By analyzing the principles of power factor correction mathematically optimum design guidelines are presented. Since the lamps are used in power factor correction stage the input power is automatically adjusted according to the number of the lamps.

  • PDF

A Study on the PSPICE Modeling of CCFL Drive Circuit Using a Piezoelectric Transformer (압전 트랜스포머를 이용한 CCFL 구동회로의 PSPICE Modeling에 관한 연구)

  • 황락훈;조문택;안익수
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.180-191
    • /
    • 2003
  • In this paper, the modelings of PSPICE of the piezoelectric transformer and CCFL drive circuit using an electrical equivalent circuit is proposed. In the CCFL drive circuit modeling the model parameters of the CCFL were derived using the method of least squares because push-pull inverter and loads such as CCFL were also modeled using PSPICE. It is considered that the simulation techniques can be used in the piezoelectric devices such as piezoelectric transformer.

Design of 30Watt Inverter for high luminance LCD Backlight Application (LCD용 고휘도 Backlight 구동을 위한 30Watt급 인버터의 설계)

  • 허정욱;김태조;임성규
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.747-750
    • /
    • 1999
  • A 30Watt inverter with 300: 1 dimming capability for high luminance, one cell, surface discharge plasma light source for LCD backlight was designed and tested. It was possible to achieve 300:1 dimming control by using the push-pull type inverter with burst-mode dimming control. The surface discharge plasma light cell with luminance of more than 5, 260 cd/$m^2$ was successfully operated.

  • PDF

Current-fed Push-pull type ZVS high frequency oscillating power supply (전류공급 Push-pull형 ZVS 고주파 발진전원장치)

  • 송진화;서철식;이경호;김종해;노채균
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.189-194
    • /
    • 1999
  • This paper proposes a current-fed type high frequency inverter using a soft switching technology Zero-Voltage-Switching to reduce turn on and off loss at the switching. The analysis of the proposed circuit was described by using normalized parameter and operating characteristics have been evaluated as to switching frequency and parameters. The theoretical results are in good agreement with the experimental ones. In the future the proposed circuit is considered to be useful for induction heating applications.

  • PDF

Electronic Ballast using Current-Fed Push-Pull Resonant Inverter with Single-Stage Power Factor Correction Circuit (전류원 방식 푸시-풀 공진형 인버터로 구성된 단일단 고역률 형광등용 전자식 안정기)

  • Chae, Gyun;Ryoo, Tae-Ha;Cho, Gyu-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.501-507
    • /
    • 2000
  • A nobel low-cost, simple and unity-power-factor electronic ballast is presented. The proposed electronic ballast employs a bypassing capacitor- and load networks composed of ballast capacitors and small charge pump capacitors as power factor correction circuit combined with the secondary winding of the transformer in the self-excited current-fed push-pull resonant inverter(CF-PPRI), resulting in cost-effectiveness and higher efficiency. By analyzing the princip1es of power factor correction mathematically, optimum design guidelines are presented. Since the lamps are used in power factor correction stage, the input power is automatically adjusted according to the number of the lamps.

  • PDF