• Title/Summary/Keyword: Push-pull dc-dc converter

Search Result 51, Processing Time 0.028 seconds

Study on Induction Motor Drive using Digitally Controlled Push-Pull Converter (디지털적으로 제어되는 푸쉬풀 컨버터를 사용하는 유도 전동기 드라이브에 대한 연구)

  • Kim, N.H.;Baik, W.S.;Choi, K.H.;Won, J.S.;Hwang, D.H.;Kim, M.H.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.478-480
    • /
    • 2008
  • On this paper, digitally controlled push-pull dc-dc converter and dc-ac inverter for induction motor control are presented, which is used one DSP(digital signal processor). This system has 12V battery input for the push-pull converter, and the push-pull converter generates 300V output for induction motor inverter input. In order to compensate the push-pull converter, the transfer function of push-pull converter is derived and digital PI compensator is adapted. Through bode diagram, stability of digital controlled push-pull converter is analyzed. To verify the proposed system, digital simulation of the induction motor drive using digital push-pull converter are performed.

  • PDF

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

A High Frequency-Link Bidirectional DC-DC Converter for Super Capacitor-Based Automotive Auxiliary Electric Power Systems

  • Mishima, Tomokazu;Hiraki, Eiji;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper presents a bidirectional DC-DC converter suitable for low-voltage super capacitor-based electric energy storage systems. The DC-DC converter presented here consists of a full-bridge circuit and a current-fed push-pull circuit with a high frequency (HF) transformer-link. In order to reduce the device-conduction losses due to the large current of the super capacitor as well as unnecessary ringing, synchronous rectification is employed in the super capacitor-charging mode. A wide range of voltage regulation between the battery and the super capacitor can be realized by employing a Phase-Shifting (PS) Pulse Width Modulation (PWM) scheme in the full-bridge circuit for the super capacitor charging mode as well as the overlapping PWM scheme of the gate signals to the active power devices in the push-pull circuit for the super capacitor discharging mode. Essential performance of the bidirectional DC-DC converter is demonstrated with simulation and experiment results, and the practical effectiveness of the DC-DC converter is discussed.

A Characteristic Analysis of Current-Fed Push Pull type DC-DC converter using LCCC Resonant circuit and ZVS function (LCCC 공진회로와 ZVS 기능을 동시에 갖는 전류형 Push Pull DC-DC 컨버터의 특성해석)

  • An, Hang-Mock;Hwang, Gye-Ho;Lee, Dal-Hae;Nam, Seung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1324-1326
    • /
    • 2000
  • This paper proposes a Current-Fed Push Pull type DC-DC converter using LCCC Resonant circuit and Zero Voltage Switching function to reduce turn on and off loss at the switching instants. This paper have the advantage which is able to operating safely in load short, because of DC reactor is connected with resonance reactor in order to supply a fixed current with low ripple from DC Power supply. The capacitor ($C_1$, $C_2$) connected in switch are common using as resonance capacitor and ZVS capacitor. The analysis of the proposed Current-Fed Push Pull type DC-DC converter is generally described by using normalized parameter, and we have evaluated characteristic values which is needed to design a circuit. We confirm a rightfulness theoretical analysis by comparing a theoretical values and experimental values obtained from experiment using MOSFET as switching devices.

  • PDF

Soft Switching DC/DC Converter Using Push-Pull (Push-Pull을 이용한 소프트 스위칭 DC/DC 컨버터)

  • Song, Sung-Geun;Park, Sung-Jun;Kim, Dae-Kyong;Shin, Duck-Shick
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.989_990
    • /
    • 2009
  • 최근 신재생에너지원의 사용 및 전기자동차의 이용이 확대되고 있는 실정에서 고승압의 전력변환기의 관심이 높아지고 있다. 이에 본 논문에서는 입출력 절연을 통하여 안전성 향상 및 고승압이 가능하며, 효율이 우수한 Push-Pull 절연형 DC/DC 컨버터를 제안한다. 제안된 컨버터는 출력단에 콘덴서를 이용한 배압 회로를 사용하여 고승압을 실현 하였으며, Soft Switching 방식을 적용하여 고효율화가 가능함을 검증 하였다.

  • PDF

A Study on Synchronous Rectification of Push-Pull Converter for Efficiency Improvement (효율개선을 위한 Push-Pull Converter의 동기정류에 관한 연구)

  • 김영규;김동중;김이훈;원충연;김규식;최세완
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.134-141
    • /
    • 2004
  • This paper presents a method of synchronous rectifier(SR) for improving the efficiency in DC/DC converter. The proposed method is used push-pull topology on primary as a single winding self driven synchronous rectification(SWSDSR). Specially, this method can improve efficiency to turn on SR switch during dead time. Finally, the simulation and experimental results will be given to show comparison and analysis on the efficiency between self driven synchronous rectification(SDSR) and SWSDSR method.

A Characteristic Estimation of Current fed Push Pull Type High Frequency Resonant DC-DC Converter with Active Clamp Circuits (능동클램프회로를 갖는 전류공급 Push-Pull형 고주파공진 DC-DC 컨버터의 특성평가)

  • 오경섭;남승식;김동희
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.517-524
    • /
    • 2004
  • In this paper, a novel zero-voltage-switching(ZVS) resonant DC-DC converter is proposed. It is composed of two symmetrical active-clamped circuits, the converter can be achieve ZVS in each switches. Also, active clamp capacitor ratios($\alpha$) of proposed circuit can be reduce a peak stress of switching voltage for each main switch. Simulation results using Pspice 9.2 ver and $C^{++}$ characteristic analysis show a provement for the validity of theoretical analysis. The analysis of the proposed Current-Fed Push Pull type DC-DC converter is generally described by using normalized parameter, and achieved an evaluated characteristic values which is needed to design a circuit. We confirm a rightfulness theoretical analysis by comparing a theoretical values and experimental values obtained from experiment using MOSFET as switching devices.

Design of a High Power Three-Phase ZVS Push-Pull Converter (대전력 3상 ZVS 푸쉬풀 컨버터 설계)

  • Park, Jun-Sung;Lee, Sang-Won;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.209-218
    • /
    • 2011
  • In low voltage high current applications such as fuel cells the current-fed DC-DC converter which has small ripple current and turn ratio is more efficient. In the applications larger than 5kW the conventional single-phase current-fed converter based on full-bridge, half-bridge or push-pull topologies has high current burden of devices such as switches, and the selection and optimized design of the devices are not easy. In this paper a three-phase active-clamped current-fed push-pull DC-DC converter suitable for high power high step-up applications is proposed. The proposed converter has reduced current burden and is suitable for wide input voltage applications due to the use of whole duty cycle range. Design methods of main components including three-phase high frequency transformers are provided, and the validity and performance of the proposed converter are proved from a 5kW prototype.

A Bidirectional Three-phase Push-pull Zero-Voltage Switching DC-DC Converter (양방향 3상 푸쉬풀 ZVS DC-DC 컨버터)

  • Kwon, Min-Ho;Han, Kook-In;Park, Jung-Sung;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.403-411
    • /
    • 2013
  • This paper proposes an isolated bidirectional three-phase push-pull dc-dc converter for high power application such as eco-friendly vehicles, renewable energy systems, energy storage systems, and solid-state transformers. The proposed converter achieves ZVS turn-on of all switches and volume of passive components is small by an effect of three-phase interleaving. The proposed converter has identical switching pattern for both boost and buck mode, and therefore can provide seamless characteristic at the mode transition. A 3kW prototype of the proposed converter has been built and tested to verify the validity of the proposed operation.

A zero-voltage zero-current switching power conversion system for fuel cell (영전압 영전류 스위칭을 이용한 연료전지용 전력변환시스템)

  • Son, Gyoung-Jong;Song, Sung-Geun;Moon, Chae-Joo;Kim, Kwang-Heon;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.385-394
    • /
    • 2006
  • The application areas of traditional push-pull converters are limited because the voltage stress of switches is high (twice of the input voltage). But the push - pull converter topology is suitable for unregulated low-voltage to high-voltage power conversion such as the fuel cell. This paper presents a novel power converter structure that is very suitable for the DC/DC converter in fuel cell systems. Based on this structure, a ZVS- ZCS push-pull converter is proposed. The switches of the proposed push-pull converter can operate under ZVS or ZCS condition with the help of a new passive clamping circuit. The passive clamping techniques solves the voltage overshoot problem. Because the buck converter circuit operates at twice the synchronous switching frequency of the push-pull converter, the peak current in the current-fed inductor and transformer is reduced. The operation principle of the proposed converter is analyzed and verified by simulations and experimental results. A 1 kW DC/DC converter was implemented with DSP TMS320F2812, from which experimental results have shown that efficiency improvement and surge suppression can be achieved effectively.