• Title/Summary/Keyword: Push-out Test

Search Result 207, Processing Time 0.026 seconds

A Study on the Composite Behavior of Steel-Concrete with Slip Anchor (슬립앵커를 이용한 강-콘크리트 합성 거동 연구)

  • Won, Deok-Hee;Han, Taek-Hee;Kim, Seung-Jun;Han, Seung-Ryong;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.2
    • /
    • pp.7-12
    • /
    • 2011
  • Presently, composite method for steel and concrete is often used the stud. Steel properties of composite column could be changed by increasing of welding. The changed properties is possibly to cause local-buckling. Composite column had a large effect by slip instead of pull-out force in comparison composite girder. Improvement of adhesive force had effect by contact area rather than height of stud in composite column. This paper proposed new type of stud and analyzed performance through experimental study. This method would be effect steel structure with curvature.

Study on the Shape of a Longitudinal Joint of the Slab-type Precast Modular Bridges (슬래브 형식 프리캐스트 모듈러교량의 종방향 연결부 형상 결정에 관한 연구)

  • Lee, Sang Yoon;Song, Jae Joon;Kim, Hyeong Yeol;Lee, Young Ho;Lee, Jung Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.98-111
    • /
    • 2012
  • In this study, a longitudinal joint connection was proposed for the short-span slab-type precast modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. The finite element based parameter analysis and the push-out test were conducted to design the shape and the dimensions of the longitudinal joint connection. Number of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load obtained from the analytical and experimental results, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the efficiency factors.

Dentin moisture conditions strongly influence its interactions with bioactive root canal sealers

  • Ozlek, Esin;Gunduz, Huseyin;Akkol, Elif;Neelakantan, Prasanna
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.2
    • /
    • pp.24.1-24.9
    • /
    • 2020
  • Objectives: It is known that bioactive materials interact with the dentin to undergo biomineralization. The exact role of moisture in this interaction is unknown. Here, we investigate the effects of dentin moisture conditions on the dislocation resistance of two bioactive root canal sealers (MTA Fillapex [Angelus Solucoes Odontologicas] and GuttaFlow BioSeal [Colténe/Whaledent AG]) at 3 weeks and 3 months after obturation. Materials and Methods: Mandibular premolars (n = 120) were prepared and randomly divided into 3 groups based on the dentin condition: group 1, dry dentin; group 2, moist dentin; group 3, wet dentin. Each group was divided into 2 subgroups for root canal filling: MTA Fillapex and GuttaFlow BioSeal. Dislocation resistance was evaluated by measuring the push-out bond strength at 3 weeks and 3 months. Failure modes were examined under a stereomicroscope. Data were statistically analyzed by Kruskal-Wallis test with a significance level of 5%. Results: Moist dentin resulted in higher bond strength values for both materials at both time points. This was significantly higher than wet and dry dentin for both the sealers at the 3 months (p < 0.05), while at 3 weeks it was significant only for GuttaFlow Bioseal. The different moisture conditions demonstrated similar trends in their effects on the dislocation resistance of the 2 root canal sealers. Conclusions: The dentin moisture conditions had a significant impact on its interaction with the bioactive materials tested. Maintaining moist dentin, but not dry or wet dentin, may be advantageous before the filling root canals with bioactive sealers.

Evaluation of Osseointegration around Tibial Implants in Rats by Ibandronate-Treated Nanotubular Ti-32Nb-5Zr Alloy

  • Nepal, Manoj;Li, Liang;Bae, Tae Sung;Kim, Byung Il;Soh, Yunjo
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.563-569
    • /
    • 2014
  • Materials with differing surfaces have been developed for clinical implant therapy in dentistry and orthopedics. This study was designed to evaluate bone response to titanium alloy containing Ti-32Nb-5Zr with nanostructure, anodic oxidation, heat treatment, and ibandronate coating. Rats were randomly assigned to two groups for implantation of titanium alloy (untreated) as the control group and titanium alloy group coated with ibandronate as the experimental group. Then, the implants were inserted in both tibiae of the rats for four weeks. After implantation, bone implant interface, trabecular microstructure, mechanical fixation was evaluated by histology, micro-computed tomography (${\mu}CT$) and the push-out test, respectively. We found that the anodized, heat-treated and ibandronate-coated titanium alloy triggered pronounced bone implant integration and early bone formation. Ibandronate-coated implants showed elevated values for removal torque and a higher level of BV/TV, trabecular thickness and separation upon analysis with ${\mu}CT$ and mechanical testing. Similarly, higher bone contact and a larger percentage bone area were observed via histology compared to untreated alloy. Furthermore, well coating of ibandronate with alloy was observed by vitro releasing experiment. Our study provided evidences that the coating of bisphosphonate onto the anodized and heat-treated nanostructure of titanium alloy had a positive effect on implant fixation.

Laboratory Experiments for the Force and Load with Pseudo-Dynamic Test: Ex-vivo Study for the Manual Therapy

  • Choi, Wansuk;Choi, Taeseok;Heo, Seoyoon;Lee, Wooram
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1889-1896
    • /
    • 2019
  • Background: Because of the lack of accurate values for applied forces in manual therapy, manual therapists relies on the magnitude of the individual's perception during applying the force. However, excessive loading maneuvers carry risks for patients. Objective: To establish the relationship between the maximal force applied to swine skin with the specific region, sex, and baseline parameters of the subject. Design: Ex-vivo Study and laboratory Experimental research Methods: 3.5 kg of Korean pork sirloin that is a piece of swine was handled and it was set 3 dimensions; #A; #B; #C. Forty-seven participants who has no experience in physical therapy randomly carried out the experiment, indicated to push each place of the pressure spots with same posture and process under supervision from the instructor who has over 15 years of manual therapy, and we measured the pressure force in each time. Results: The biggest pressure force was recorded in spot #A, and #B was represented after #C. Pressure on #A showed certain statistic relation with height (r=.317, p<.05) and weight (r=.434, p<.01); pressure on #B showed certain relation which has statistical meaning with only height (r=.401, p<.01); pressure on #C emerged to have statistic relationship with height (r=.308, p<.05)and weight (r=.428, p<.01). The age aspect revealed relation with pressure on #A, #B and #C, but that was not statistically significant. Conclusions: It can be inferred that there is the most loss of pressure in the area where cartilage is like an island in the middle.

Experimental and numerical study on shear studs connecting steel girder and precast concrete deck

  • Xia, Ye;Chen, Limu;Ma, Haiying;Su, Dan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.4
    • /
    • pp.433-444
    • /
    • 2019
  • Shear studs are often used to connect steel girders and concrete deck to form a composite bridge system. The application of precast concrete deck to steel-concrete composite bridges can improve the strength of decks and reduce the shrinkage and creep effect on the long-term behavior of structures. How to ensure the connection between steel girders and concrete deck directly influences the composite behavior between steel girder and precast concrete deck as well as the behavior of the structure system. Compared with traditional multi-I girder systems, a twin-I girder composite bridge system is more simplified but may lead to additional requirements on the shear studs connecting steel girders and decks due to the larger girder spacing. Up to date, only very limited quantity of researches has been conducted regarding the behavior of shear studs on twin-I girder bridge systems. One convenient way for steel composite bridge system is to cast concrete deck in place with shear studs uniformly-distributed along the span direction. For steel composite bridge system using precast concrete deck, voids are included in the precast concrete deck segments, and they are casted with cast-in-place concrete after the concrete segments are erected. In this paper, several sets of push-out tests are conducted, which are used to investigate the heavier of shear studs within the voids in the precast concrete deck. The test data are analyzed and compared with those from finite element models. A simplified shear stud model is proposed using a beam element instead of solid elements. It is used in the finite element model analyses of the twin-I girder composite bridge system to relieve the computational efforts of the shear studs. Additionally, a parametric study is developed to find the effects of void size, void spacing, and shear stud diameter and spacing. Finally, the recommendations are given for the design of precast deck using void for twin I-girder bridge systems.

Bond-slip behaviour of H-shaped steel embedded in UHPFRC

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Chen, Chufa;Li, Yongjie;Lin, Zhiwei;Liao, Wen-I
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.563-582
    • /
    • 2021
  • The present study experimentally and analytically investigated the push-out behaviour of H-shaped steel section embedded in ultrahigh-performance fibre-reinforced concrete (UHPFRC). The effect of significant parameters such as the concrete types, fibre content, embedded steel length, transverse reinforcement ratio and concrete cover on the bond stress, development of bond stress along the embedded length and failure mechanism has been reported. The test results show that the bond slip behaviour of steel-UHPFRC is different from the bond slip behaviour of steel-normal concrete and steel-high strength concrete. The bond-slip curves of steel-normal concrete and steel-high strength concrete exhibit brittle behaviour, and the bond strength decreases rapidly after reaching the peak load, with a residual bond strength of approximately one-half of the peak bond strength. The bond-slip curves of steel-UHPFRC show an obvious ductility, which exhibits a unique displacement pseudoplastic effect. The residual bond strength can still reach from 80% to 90% of the peak bond strength. Compared to steel-normal concrete, the transverse confinement of stirrups has a limited effect on the bond strength in the steel-UHPFRC substrate, but a higher stirrup ratio can improve cracking resistance. The experimental campaign quantifies the local bond stress development and finds that the strain distribution in steel follows an exponential rule along the steel embedded length. Based on the theory of mean bond and local bond stress, the present study proposes empirical approaches to predict the ultimate and residual bond resistance with satisfactory precision. The research findings serve to explain the interface bond mechanism between UHPFRC and steel, which is significant for the design of steel-UHPFRC composite structures and verify the feasibility of eliminating longitudinal rebars and stirrups by using UHPFRC in composite columns.

Effect of irrigation protocols on smear layer removal, bond strength and nanoleakage of fiber posts using a self-adhesive resin cement

  • Rodrigo Stadler Alessi;Renata Terumi Jitumori ;Bruna Fortes Bittencourt;Giovana Mongruel Gomes ;Joao Carlos Gomes
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.28.1-28.13
    • /
    • 2023
  • Objectives: This study aimed to investigate the effect of the application method of 2% chlorhexidine (CHX) and its influence on the adhesion of fiberglass posts cemented with a self-adhesive resin cement. Materials and Methods: Sixty human mandibular premolars were endodontically treated and divided into 5 groups (n = 12), according to the canal irrigant and its application method: 2 groups with conventional syringe irrigation (CSI)-2.5% sodium hypochlorite (NaOCl) (control) and 2% CHX- and 3 groups with 2% CHX irrigation/activation-by passive ultrasonic irrigation (PUI), Easy Clean file, and XP-Endo Finisher file. Two roots per group were evaluated for smear layer (SL) removal by scanning electron microscopy. For other roots, fiber posts were luted using a self-adhesive resin cement. The roots were sectioned into 6 slices for push-out bond strength (BS) (7/group) and nanoleakage (NL) (3/group). Data from SL removal were submitted to Kruskal-Wallis and Student-Newman-Keuls tests (α = 0.05). Data from BS and NL were evaluated by 2-way analysis of variance and Tukey's test (α = 0.05). Results: For SL removal and BS, the CHX irrigation/activation promoted better values than CSI with CHX (p < 0.05), but it was not significantly different from CSI with NaOCl (p > 0.05). For NL, the lowest values were obtained by the chlorhexidine irrigation/activation groups (p < 0.05). Conclusions: Active 2% CHX irrigation can be used to improve the post space cleaning and adhesion before fiber post cementation with self-adhesive resin cements.

Experimental Study on the Shear Strength of Form Tie Connector Linked by Stud Coupler (스터드 커플러로 연결된 폼타이 연결재의 전단내력에 관한 실험 연구)

  • Seo, Soo-Yeon;Kim, Seoung-Soo;Yoon, Yong-Dae;Ha, Gee-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.573-581
    • /
    • 2008
  • In general, conventional sheeting H-pile is often used as a temporary member installed upon construction of outer retaining wall at basement floor. In CBW (composite basement wall), R/C basement wall is combined with H-Pile and resists lateral soil pressure together. This paper presents an experimental results of push out shear test of CBW with stud coupler as shear connectors to combine H-Pile with R/C wall six specimens with different diameter of FT (form tie) and arrangement of shear connectors were tested to evaluate the shear capacity of the composite wall. Test results showed that shear strength increased with diameter of FT. The shear strength of shear connector in CBW could be suitably predicted by using the previous equations codified in the codes. Best correlation, especially, was found when the calculation result by the formula in AISC 360-05 was compared to test one.

Prediction of Structural Performance of an Automotive Ball Joint (자동차용 볼조인트의 구조적 성능 예측)

  • Kim, Seong-Uk;Jeong, Gyeong-Il;Lee, Kwon-Hee;Lee, Dong-Jin;Lee, Myeong-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.705-713
    • /
    • 2018
  • An automotive ball joint connects the suspension system to the steering system and helps to enable rotational and linear motion between the two elements for steering. This study examines a ball joint used in medium and large-sized pickup trucks. Ball joints consist of a stud, socket, bearing, and plug. The main structural performance metrics of ball joints are the pull-out strength and push-out strength. These structural parameters must meet certain criteria to avoid serious accidents. Test and simulation methods are used to investigate the design requirements, but tests are time-consuming and costly. In this study, we modeled ball joints in SolidWorks and performed a finite element analysis in Abaqus to predict structural performance. The analysis was used to obtain the structural performance required for the static analysis of a 2D axisymmetric model. The uncertainties in the manufacturing of the ball joint were assumed to be the manufacturing tolerances, and the dimensional design variables were identified through case studies. The manufacturing tolerances at each level were defined, and the results were compared with experimental results.