• 제목/요약/키워드: Push-out

검색결과 398건 처리시간 0.031초

Push-out bond strength and dentinal tubule penetration of different root canal sealers used with coated core materials

  • Sungur, Derya Deniz;Purali, Nuhan;Cosgun, Erdal;Calt, Semra
    • Restorative Dentistry and Endodontics
    • /
    • 제41권2호
    • /
    • pp.114-120
    • /
    • 2016
  • Objectives: The aim of this study was to compare the push-out bond strength and dentinal tubule penetration of root canal sealers used with coated core materials and conventional gutta-percha. Materials and Methods: A total of 72 single-rooted human mandibular incisors were instrumented with NiTi rotary files with irrigation of 2.5% NaOCl. The smear layer was removed with 17% ethylenediaminetetraacetic acid (EDTA). Specimens were assigned into four groups according to the obturation system: Group 1, EndoRez (Ultradent Product Inc.); Group 2, Activ GP (Brasseler); Group 3, SmartSeal (DFRP Ltd. Villa Farm); Group 4, AH 26 (Dentsply de Trey)/gutta-percha (GP). For push-out bond strength measurement, two horizontal slices were obtained from each specimen (n = 20). To compare dentinal tubule penetration, remaining 32 roots assigned to 4 groups as above were obturated with 0.1% Rhodamine B labeled sealers. One horizontal slice was obtained from the middle third of each specimen (n = 8) and scanned under confocal laser scanning electron microscope. Tubule penetration area, depth, and percentage were measured. Kruskall-Wallis test was used for statistical analysis. Results: EndoRez showed significantly lower push-out bond strength than the others (p < 0.05). No significant difference was found amongst the groups in terms of percentage of sealer penetration. SmartSeal showed the least penetration than the others (p < 0.05). Conclusions: The bond strength and sealer penetration of resin-and glass ionomer-based sealers used with coated core was not superior to resin-based sealer used with conventional GP. Dentinal tubule penetration has limited effect on bond strength. The use of conventional GP with sealer seems to be sufficient in terms of push-out bond strength.

Push-out bond strength and intratubular biomineralization of a hydraulic root-end filling material premixed with dimethyl sulfoxide as a vehicle

  • Ju-Ha Park;Hee-Jin Kim;Kwang-Won Lee;Mi-Kyung Yu;Kyung-San Min
    • Restorative Dentistry and Endodontics
    • /
    • 제48권1호
    • /
    • pp.8.1-8.8
    • /
    • 2023
  • Objectives: This study was designed to evaluate the parameters of bonding performance to root dentin, including push-out bond strength and dentinal tubular biomineralization, of a hydraulic bioceramic root-end filling material premixed with dimethyl sulfoxide (Endocem MTA Premixed) in comparison to a conventional powder-liquid-type cement (ProRoot MTA). Materials and Methods: The root canal of a single-rooted premolar was filled with either ProRoot MTA or Endocem MTA Premixed (n = 15). A slice of dentin was obtained from each root. Using the sliced specimen, the push-out bond strength was measured, and the failure pattern was observed under a stereomicroscope. The apical segment was divided into halves; the split surface was observed under a scanning electron microscope, and intratubular biomineralization was examined by observing the precipitates formed in the dentinal tubule. Then, the chemical characteristics of the precipitates were evaluated with energy-dispersive X-ray spectroscopic (EDS) analysis. The data were analyzed using the Student's t-test followed by the Mann-Whitney U test (p < 0.05). Results: No significant difference was found between the 2 tested groups in push-out bond strength, and cohesive failure was the predominant failure type. In both groups, flake-shaped precipitates were observed along dentinal tubules. The EDS analysis indicated that the mass percentage of calcium and phosphorus in the precipitate was similar to that found in hydroxyapatite. Conclusions: Regarding bonding to root dentin, Endocem MTA Premixed may have potential for use as an acceptable root-end filling material.

전단 연결재의 고온 성능 평가에 관한 연구 (A Study on the Slip Test of Shear Connector in Fire)

  • 한상훈;박원섭;이철호
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.48-51
    • /
    • 2008
  • Shear connector is the element which resist in the horizontal shear force between steel and concrete of composite members and the stud bolt is often used because of its constructional convenience and serviceability. Although the push-out test is the most common method to evaluate shear slip behaviour, it is suitable for only room temperature conditions. In this study, we investigated about shear force, temperature distribution and slip displacement of shear connector in high temperature through the modified push-out test with electronic furnace invented for steel part heating.

  • PDF

Evaluation of Shear-Induced Phase Transformation of $\beta$-Cristobalite by Fiber Push-Out Technique

  • Sang Jin Lee;Dong Zhu;Jae Suk Sung
    • The Korean Journal of Ceramics
    • /
    • 제3권3호
    • /
    • pp.208-212
    • /
    • 1997
  • Shear-induced phase transformation behavior of chemically stabilized $\beta$-cristobalite was studied by the fiber push-out technique. To obtain the critical grain size for phase transformation, the hot-pressed polycrystalline $\beta$-cristobalite, which was used as the interphase between fiber and matrix, was annealed at $1300^{\circ}C$ for 10h. Two types of fibers, mullite and sapphire fiber, were used in this study. Debonding between mullite fiber and cristobalite interphase occurred at a critical load of 230 MPa. Static friction and fiber sliding were continuously followed by debonding. Shear-induced transformation induced cracks in the cristobalite interphase at the debonding stage. In the case of the sapphire fiber, the debonding occurred at a lower load of 180 MPa due to the residual stress in the interface caused by the difference in thermal expansion coefficients between the fiber and the cristobalite interphase. The load was insufficient for shear-induced phase transformation.

  • PDF

Study on push-out test and bond stress-slip relationship of circular concrete filled steel tube

  • Yin, Xiaowei;Lu, Xilin
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.317-329
    • /
    • 2010
  • According to the results of 9 circular concrete filled steel tube (CFT) push-out tests, a new theoretical model for average bond stress versus free end slip curve is proposed. The relationship between verage bond stress and free end slip is obtained considering some varying influential parameters such as slenderness ratio and diameter-to-thickness ratio. Based on measured steel tube strain and relative slip at different longitudinal positions, the distribution of bond stress and relative slip along the length of steel tube is obtained. An equation for predicting the varying bond-slip relationship along longitudinal length and a position function reflecting the variation are proposed. The presented method can be used in the application of finite element method to analyze the behavior of CFT structures.

Interfacial shear resistance of angle shear connectors welded to concrete filled U-shaped CFS beam

  • Oh, Hyoung Seok;Shin, Hyeongyeop;Ju, Youngkyu;Kang, Thomas H.K.
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.311-325
    • /
    • 2022
  • For multi-story structural systems, Korean steel industry has fostered development of a steel-concrete composite beam. Configuration of the composite beam is characterized by steel angle shear connectors welded to a U-shaped cold formed-steel beam. Effects of shear connector orientation and spacing were studied to evaluate current application of the angle shear connector design equation in AC495. For the study, interfacial shear resistance behavior was investigated by conducting 24 push-out tests and attuned using unreinforced push-out specimens. Interfacial shear to horizontal slip response was reported along with corresponding failure patterns. Pure shear connector strength was also evaluated by excluding concrete shear contribution, which was estimated in relation to steel beam-slab interface separation or interfacial crack width.

The effect of individualization of fiberglass posts using bulk-fill resin-based composites on cementation: an in vitro study

  • Lins, Rodrigo Barros Esteves;Cordeiro, Jairo Matozinho;Rangel, Carolina Perez;Antunes, Thiago Bessa Marconato;Martins, Luis Roberto Marcondes
    • Restorative Dentistry and Endodontics
    • /
    • 제44권4호
    • /
    • pp.37.1-37.10
    • /
    • 2019
  • Objectives: This study evaluated the bond strength of various fiberglass post cementation techniques using different resin-based composites. Materials and Methods: The roots from a total of 100 bovine incisors were randomly assigned to 5 treatment groups: G1, post + Scotchbond Multi-Purpose (SBMP) + RelyX ARC luting agent; G2, relined post (Filtek Z250) + SBMP + RelyX ARC; G3, individualized post (Filtek Z250) + SBMP; G4, individualized post (Filtek Bulk-Fill) + SBMP; G5, individualized post (Filtek Bulk-Fill Flow) + SBMP. The samples were subjected to the push-out (n = 10) and pull-out (n = 10) bond strength tests. Data from the push-out bond strength test were analyzed using 2-way analysis of variance (ANOVA) with the Bonferroni post hoc test, and data from the pull-out bond strength test were analyzed using 1-way ANOVA. Results: The data for push-out bond strength presented higher values for G2 and G5, mainly in the cervical and middle thirds, and the data from the apical third showed a lower mean push-out bond strength in all groups. No significant difference was noted for pull-out bond strength among all groups. The most frequent failure modes observed were adhesive failure between dentine and resin and mixed failure. Conclusions: Fiberglass post cementation using restorative and flowable bulk-fill composites with the individualization technique may be a promising alternative to existing methods of post cementation.

초간편 강합성 바닥판 신형식 전단연결재의 전단내력 평가 (An Evaluation on the Shear Strength of New Type Shear Connectors for a Simple Steel-Concrete Composite Deck)

  • 윤기용;김상섭;한득천
    • 한국강구조학회 논문집
    • /
    • 제20권4호
    • /
    • pp.519-528
    • /
    • 2008
  • 초간편 강합성 바닥판은 H형강을 거더로 활용하면서 교량가설시 H형강의 횡-비틀림 좌굴을 방지하고 공기를 단축시키기 위하여 개발하였다. 또한 초간편 강합성 바닥판과 H형강 거더의 합성거동을 확보하기 위하여 사용되는 전단연결재를 초간편 강합성 바닥판의 강판과 H형강 거더의 연결방식에 따라 연결볼트를 길게 뽑아 스터드를 대체하여 전단연결재로 사용하는 방식과 유공I형강을 전단연결재로 활용하는 방식으로 개발하였다. 본 연구에서는 이렇게 개발한 신형식 전단연결재에 대한 전단내력 평가를 위하여 Push-Out 실험을 실시하고, 기존 전단연결재의 전단내력 평가식과 비교 분석하였다. Push-Out 실험을 통하여 연결볼트는 스터드와 같은 거동을 하는 것으로 확인하였으며, 도로교 설계기준의 전단내력 평가식은 지름이 큰 연결볼트의 전단내력을 과대평가하는 것으로 나타났다. 용접량의 변화에 따른 유공I형강의 Push-Out 실험에서는 용접량이 적은 경우에는 용접부의 전단내력이 지배하였으나, 용접량이 일정정도 이상인 경우에는 일정한 전단내력을 발휘하는 것으로 나타났다.

소형 Haripin 공진기를 이용한 K 대역 Push-Push형 발진기 (The K-band push-push type miniaturized haripin resonator oscillator)

  • 주한기
    • 한국통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.967-973
    • /
    • 1997
  • In this paper, the designed and fabrication of a K-band push-push oscillator using miniaturized hairpin resonator have been presented. One experimenal oscillator has been designed and fabricated for K-band point-to-point operation. the miniaturized harpin resonator has been analyzed theoretically and simulated by MPIE(Mixed Potential Integral Equation) method. With this results, the analysis of hairpin resonator which coupled microstrip line has been carried out with transmission-mode using this results. an optimized output matching network for the suppression of the fundamental and the 3rd order harmonic was acquired by using a nonlinear analysis method. The fabricated oscillator shows the output power of -2.28dBm, the fundamental frequency suppression of -19dBc, the 3rd order harmonic suppressionof -24dBc and 0.33 percent effiiency at 22.8GHz. The experimental outputs are in good agreement with the theoretical and simulated results.

  • PDF

Push-Pull Detection 구조 및 빠른 응답 특성을 갖는 LDO 레귤레이터 (LDO Regulator with Improved Fast Response Characteristics and Push-Pull Detection Structure)

  • 이주영
    • 전기전자학회논문지
    • /
    • 제25권1호
    • /
    • pp.201-205
    • /
    • 2021
  • 본 논문에서는 push-pull 감지 회로 구조로 인해 load transient 특성을 개선시킨 LDO를 제안하였다. LDO 레귤레이터 패스 트랜지스터의 입력단과 내부 오차증폭기의 출력단 사이에 제안된 push-pull 감지 회로 구조로 인한 전압 델타 값의 응답 특성을 개선시켜 종래의 LDO 레귤레이터보다 load transient 특성에서 우수한 효과를 가진다. 기존의 LDO 레귤레이터보다 rising time에서는 약 244 ns, falling time에서는 약 90 ns 만큼의 향상된 응답속도를 가진다. 제안된 회로는 Cadence사의 Spectre, Virtuoso 시뮬레이션 tool을 사용하여 samsung 0.13um 공정으로 특성 및 결과를 시뮬레이션 하였다.