• Title/Summary/Keyword: Purinoceptors

Search Result 10, Processing Time 0.033 seconds

Purinoceptor and Intracellular $Ca^{2+}$ Regulation in Rat Prostate N euronencocrine Cells

  • Kim, Jun-Hee;Nam, Joo-Hyun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2002.06b
    • /
    • pp.45-45
    • /
    • 2002
  • Extracellular ATP regulates a wide range of cellular function including the growth of prostate gland. Purinoceptors (ATP receptors) are divided into P2X (ligand-gated ion channels) and P2Y (G-protein-coupled receptor) subfamilies. In the present study, we investigated the types of purinoceptors in rat prostate neuroendocrine (RPNE) cells using whole-cell patch clamp technique, intracellular $Ca^{2+}$ measurement and RT-PCR analysis.(omitted)d)

  • PDF

Effects of Various Nucleotides on the Membrane Permeability (Nucleotides가 세포막 투과도에 미치는 영향)

  • Lee, Joong-Woo;Jeong, Seong-Woo
    • The Korean Journal of Physiology
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 1989
  • The present study was designed to investigate i) the action of various nucleotides on membrane permeability of rat red blood cell and hepatocyte for $Na^{+}$ and $Rb^{+}$ ii) the characteristics of purinoceptors on these cell membranes. Blood from Sprague-Dawley rats was obtained by carotid arterial cannulation. Red blood cells were then washed 3 times with saline at $4{\circ}C$. Hepatic parenchymal cells were isolated from rat livers by using a modification of the Berry and Friend (1969) method. For the $Na^{+}$ influx studies, isolated RBC and hepatocyte were incubated in incubation medium containing $^{22}Na^{+}0.2\;{\mu}Ci/ml$ at $37^{\circ}C$. After various time intervals samples were removed from the incubation flask and washed out 3 times with ice-cold washing solutions. Cells were destroyed by adding Triton X-100 and TCA solution. After centrifugation, the supernatants were assayed for $^{22}Na^{+}$ by gamma counter. $^{86}Rb^{+}$ was used to simulate $K^{+}$ in these $K^{+}efflux$ studies. Isolated hepatocytes were incubated for 60 min in the loading solution containing $^{86}Rb^{+}\;10\;{\mu}Ci/ml$ at $37^{\circ}C$. After loading, the cells washed out 3 times by centrifugation with washing solution. The cells were incubated in buffer solution at $37^{\circ}C$. At intervals thereafter, samples were removed and centrifuged. The supernatants were analyzed for $^{86}Rb^{+}$ by liquid scintillation counter. The main results of the experiments were: 1) ATP and ATPP increased in both $^{22}Na^{+}$ influx and $^{86}Rb^{+}$ efflux in the red blood cell. Although ADP showed a tendency to increase in RBC membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$, the changes were not significantly different from the control. 2) The Significant changes in $^{22}Na^{+}$ and $^{86}Rb^{+}$ flux by ATP were also demonstrated in hepatocyte. ATPP and ADP showed a tendency to increase in hepatocyte membrane permeability for both ions. 3) Other nucleoside triphosphates-ITP, GTP and CTP-did not change in membrane permeability for $^{22}Na^{+}$ and $^{86}Rb^{+}$ in RBC and hepatocyte. In conclusion, not only ATP but also ATPP activate purinoceptors and change in membrane permeability for $Na^{+}$ and $K^{+}$. In order to activate purinoceptors on the cell membrane, the nucleotides have to possess intact adenine moiety and three phosphates or more in its molecule.

  • PDF

Voltage-sensitive Calcium Channels Are Linked to P2X Purinoceptors in PC12 Cells

  • Hur, Eun-Mi;Park, Tae-Ju;Kim, Kyong-Tai
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.68-68
    • /
    • 1999
  • Extracellular A TP is known to function as a neurotransmitter and as a modulator in the variety of cell types. In PC12 cells, extracellular A TP elevates [Ca$\^$2+/]j through receptor-operated Ca$\^$2+/ channels and through the activation of phospholipase C, thereby facilitating the secretion of neurotransmitters.(omitted)

  • PDF

Roles for α1-adrenoceptors during contractions by electrical field stimulation in mouse vas deferens

  • Alsufyani, Hadeel A.;Docherty, James R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.6
    • /
    • pp.525-532
    • /
    • 2021
  • We have investigated the relative roles of α1-adrenoceptors and purinoceptors in contractions to low and high frequency stimulation of the mouse vas deferens, in terms of the time course of responses. In separate experiments, isometric contractile responses were obtained to 10 pulses at 1 Hz and 40 pulses at 10 Hz. Responses to 1 Hz stimulation consisted of a series of discrete peaks. The α1A-adrenoceptor antagonist RS100329 (10-9M-10-7M) significantly reduced the response to the first pulse, the α1D-adrenoceptor antagonist BMY7378 (10-7M-10-6M) significantly reduced the response to the first two pulses, and the non-selective α1-adrenoceptor antagonist prazosin (10-8M) reduced the response to the first 4 pulses at 1 Hz. Responses to 10 Hz stimulation consisted of an early peak response and a maintained plateau response. RS100329 significantly reduced the peak response but did not significantly affect the plateau response. Prazosin, significantly reduced both the peak and plateau responses. The α1A-adrenoceptor antagonist RS17053 in high concentrations reduced mainly the plateau response leaving a clear early peak response. The plateau response of contraction was almost abolished by the purinoceptor antagonist suramin. These results suggest that there is a relatively minor early α1D-adrenoceptor and a larger early α1A-adrenoceptor component to stimulationevoked contractions of mouse vas deferens, but the major α1-adrenoceptor component is revealed by prazosin to be α1B-adrenoceptor mediated. α1B-Adrenoceptor activation probably facilitates contractions mediated by other α1-adrenoceptors and by purinoceptors. These results suggest that combined non-selective α1-adrenoceptor blockade, particularly α1B-adrenoceptor blockade, in addition to P2X1-purinoceptor blockade is useful in reducing male fertility.

Evidence for Adenosine Triphosphate (ATP) as an Excitatory Neurotransmitter in Guinea-Pig Gastric Antrum

  • Kang, Tong-Mook;Xu, Wenxie;Kim, Sung-Joon;Ahn, Seung-Cheol;Kim, Young-Chul;So, In-Suk;Park, Myoung-Kyu;Uhm, Dae-Yong;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.165-174
    • /
    • 1999
  • We explore the question of whether adenosine 5'-triphosphate (ATP) acts as an excitatory neurotransmitter in guinea-pig gastric smooth muscle. In an organ bath system, isometric force of the circular smooth muscle of guinea-pig gastric antrum was measured in the presence of atropine and guanethidine. Under electrical field stimulation (EFS) at high frequencies (>20 Hz), NO-mediated relaxation during EFS was followed by a strong contraction after the cessation of EFS (a 'rebound-contraction'). Exogenous ATP mimicked the rebound-contraction. A known $P_{2Y}-purinoceptor$ antagonist, reactive blue 2 (RB-2), blocked the rebound-contraction while selective desensitization of $P_{2Y}-purinoceptor$ with ${\alpha},{\beta}-MeATP$ did not affect it. ATP and 2-MeSATP induced smooth muscle contraction, which was effectively blocked by RB-2 and suramin, a nonselective $P_2-purinoceptor$ antagonist. Particularly, in the presence of RB-2, exogenous ATP and 2-MeSATP inhibited spontaneous phasic contractions, suggesting the existence of different populations of purinoceptors. Both the rebound-contraction and the agonist-induced contraction were not inhibited by indomethacin. The rank orders of agonists' potency were 2-MeSATP > ATP ${ge}$ UTP for contraction and ${\alpha},{\beta}-MeATP\;{\ge}\;{\beta},{\gamma}-MeATP$ for inhibition of the phasic contraction, that accord with the commonly accepted rank order of the classical $P_{2Y}-purinoceptor$ subtypes. Electrical activities of smooth muscles were only slightly influenced by ATP and 2-MeSATP, whereas ${\alpha},{\beta}-MeATP$ attenuated slow waves with membrane hyperpolarization. From the above results, it is suggested that ATP acts as an excitatory neurotransmitter, which mediates the rebound-contraction via $P_{2Y}-purinoceptor$ in guinea-pig gastric antrum.

  • PDF

Involvement of phospholipase $A_2$ in ATP-induced mucin release from cultured Hamster Tracheal Surface Epithelial cells

  • Jo, M.;Ko, K.H.;Kim, K.C.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.219-219
    • /
    • 1996
  • Mucin release from hamster tracheal surface epithelial(HTSE) cells can be stimulated by extracellular ATP via activation of P$_2$ purinoceptors located on the cell surface which appears to be coupled to phospholipase C via G proteins. However, our preliminary data indicate that the ATP-induced mucin release involves, in part, activation of PKC, but not an increase in the intracellular Ca++ level, suggesting the presence of another pathway which is separate from the PLC-PKC pathway, In this study, we intended to confirm the previous observation and subsequently identify an additional mechanism. Confluent HTSE cells were metabolically labeled with either $^3$H-glucosamine or $^3$H-arachidonic acid(AA), and release of either $^3$H-mucin or $^3$H-AA was quantified following various treatments. $^3$H-mucin was assayed using the sepharose CL-4B gel-filtration method, whereas $^3$H-AA liberation was measured by counting $^3$H-radioactivity in the chase medium. We found that: (1)Desensitization of PKC by pretreatment with PMA completely abolished the mucin releasing effect of PMA but partially inhibited the ATP-induced mucin release; (2) ATP increases release of $^3$H-AA in a dose-dependent fashion; (3) mepacrine, an inhibitor of PLA$_2$, attenuates ATP-induced mucin release in a dose-dependent fashion. These results confirm our previous notion that the PLC-PKC pathway is responsible, in part, for ATP-induced mucin release. Furthermore, activation of PLA$_2$ appears to be an additional pathway which is involved in ATP-induced mucin release.

  • PDF

Extracellular ATP Stimulates $Na^+\;and\;Cl^-$ Transport through the Activation of Multiple Purinergic Receptors on the Apical and Basolateral Membranes in M-1 Mouse Cortical Collecting Duct Cells

  • Jung, Jin-Sup;Hwang, Sook-Mi;Lee, Ryang-Hwa;Kang, Soo-Kyung;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.3
    • /
    • pp.231-241
    • /
    • 2001
  • The mammalian cortical collecting duct (CCD) plays a major role in regulating renal NaCl reabsorption, which is important in $Na^+$ and $Cl^-$ homeostasis. The M-1 cell line, derived from the mouse cortical collecting duct, has been used as a mammalian model of the study on the electrolytes transport in CCD. M-1 cells were grown on collagen-coated permeable support and short circuit current $(I_{sc})$ was measured. M-1 cells developed amiloride-sensitive current $5{\sim}7$ days after seeding. Apical and basolateral addition of ATP induced increase in $I_{sc}$ in M-1 cells, which was partly retained in $Na^+-free$ or $Cl^--free$ solution, indicating that ATP increased $Na^+$ absorption and $Cl^-$ secretion in M-1 cells. $Cl^-$ secretion was mediated by the activation of apical cystic fibrosis transmembrane regulator (CFTR) chloride channels and $Ca^{2+}-activated$ chloride channels, but $Na^+$ absorption was not mediated by activation of epithelal sodium channel (ENaC). ATP increased cAMP content in M-1 cells. The RT-PCR analysis demonstrated that M-1 cells express $P2Y_2,\;P2X_3\;and\;P2Y_4$ receptors. These results showed that ATP regulates $Na^+$ and $Cl^-$ transports via multiple P2 purinoceptors on the apical and basolateral membranes in M-1 cells.

  • PDF

ATP-Induced Histamine Release Is in Part Related to Phospholipase $A_2$-Mediated Arachidonic Acid Metabolism in Rat Peritoneal Mast Cells

  • Lee, Yun-Hye;Lee, Seung-Jun;Seo, Moo-Hyun;Kim, Chang-Jong;Sim, Sang-Soo
    • Archives of Pharmacal Research
    • /
    • v.24 no.6
    • /
    • pp.552-556
    • /
    • 2001
  • Histamine and arachidonic acid (AA) release was measured using the P2-purinoceptor antaongists, phospholipase $A_2{\;}(PLA_2)$ and cyclooxygenase (COX)/lipoxygenase (LOX) inhibitors to determine whether or not ATP-induced histamine release is associated with arachidonic acid (AA) release in rat peritoneal mast cells. ATP increased histamine release in a dose dependent manner, whereas adenosine did not. PPADS (a selective P2X-purinoceptor antagonist) and suramin (a nonselective P2X,2Y-purinoceptor antagonist) inhibited ATP-induced histamine release in a dose dependent manner. However, RB-2 (a P2Y-purinoceptor antagonist) did not block ATP-induced histamine release. Manoalide and oleyloxyethyl phosphorylcholine (OPC), secretory PLA$_2$ inhibitors, also inhibited ATP-induced histamine release dose-dependently. Both COX inhibitors (ibuprofen and indomethacin) and LOX inhibitors (baicalein and caffeic acid) inhibited ATP-induced histamine in a dose dependent manner. ATP significantly increased [$^3H$]AA release by 54%. PPADS and suramin significantly inhibited ATP-induced [3H]Ph release by 81% and 39%, respectively. ATP-induced histamine release was significantly inhibited by a variety of protein kinase inhibitors, such as bisindolmaleimide, genistein, methyl 2,5-dihydroxycinnamate, W-7 and trifluoperazine. Overall, the results suggest that ATP-induced histamine release is in part related to the PLA2-mediated AA metabolism and P2X-purinoceptors.

  • PDF

Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells

  • Kim, Na-Hyun;Park, Kyu-Sang;Sohn, Joon-Hyung;Yeh, Byung-Il;Ko, Chang-Mann;Kong, In-Deok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.1
    • /
    • pp.61-66
    • /
    • 2011
  • P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used $Ca^{2+}$ imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP ($10\;{\mu}M$) elicited strong but transient $[Ca^{2+}]_i$ increase in a concentration dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking $[Ca^{2+}]_i$ transients were 2MeS-ATP>ATP>>UTP=${\alpha}{\beta}$-MeATP, which was compatible with the subclass of $P2Y_1$ receptor. The $[Ca^{2+}]_i$ transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of $P2Y_1$ selective blocker (MRS 2179; $30\;{\mu}M$). $P2Y_1$ receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, $P2Y_1$ receptor is mainly expressed in a retinoblastoma cell, which elicits $Ca^{2+}$ release from internal $Ca^{2+}$ storage sites via the phospholipase C-mediated pathway. $P2Y_1$ receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic $[Ca^{2+}]_i$ signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.

Purinergic regulation of calcium signaling and exocytosis in rat prostate neuroendocrine cells

  • Kim, Jun-Hee;Kim, Mean-Hwan;Koh, Duk-su;Park, So-Jung;Kim, Soo-Jung;Nam, Joo-Hyun;Lee, Jee-Eun;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.54-54
    • /
    • 2003
  • Prostate gland contains neuroendocrine cells (PNECs) are playing important roles in physiological and pathophysiological processes of the prostate gland. Here, we investigated the role of purinoceptors in PNECs freshly isolated from rat ventral prostate (RPNECs) that show immunoreactivity to chromogranin A. Fura-2 ratiometry revealed that ATP evokes both fast Ca$\^$2+/ influx and store Ca$\^$2+/ release in RPNECs. A whole-cell patch clamp study demonstrated fast inactivating cationic current activated by ATP or by ${\alpha}$,${\beta}$-MeATP, which was blocked by ATP-TNP. The activation of P2X inward current was tightly associated with a sharp increase in [Ca$\^$2+/]$\sub$c/. The presence of P2X1/3 subtypes were proved by RT-PCR analysis. For the stored Ca$\^$2+/ release, ATP and UTP showed similar effects, suggesting the dominant role or P2Y2 subtypes, also confirmed by RT-PCR. Both P2X (${\alpha}$,${\beta}$-MeATP) and P2Y (UTP) stimulation induced changes in the cell morphology (initial shrinkage and blob formation on the surface) reversibly. Exocytotic membrane trafficking events were monitored with the membrane-bound fluorescent dye, FM1-43 using confocal microscopy. In spite of the similar Ca$\^$2+/ responses, UTP was far less effective in triggering exocytosis than ${\alpha}$,${\beta}$ -MeATP. Since serotonin is reportedly stored in the secretory granule of PNECs, we directly examined whether the aforementioned agonists elicit release of serotonin using carbon fiber electrode-amperometry. In accordance with the results of FM1 -43 experiments, ${\alpha}$,${\beta}$-MeATP efficiently evoke serotonin secretion while not with UTP. In summary, the P2X-mediated Ca$\^$2+/ influx plays crucial roles in the exocytosis of RPNECs. Although a global increase in [Ca$\^$2+]$\sub$c/ might be related with the morphological changes, a sharp rise of [Ca$\^$2+/]$\sub$c/ in the putative sub-plasmalemmal ‘microdomains’ might be a decisive factor for the exocytosis.

  • PDF