Browse > Article
http://dx.doi.org/10.4196/kipp.2011.15.1.61

Functional Expression of P2Y Receptors in WERI-Rb1 Retinoblastoma Cells  

Kim, Na-Hyun (Department of Basic Nursing Science and Institute for Nursing Science, Keimyung University)
Park, Kyu-Sang (Department of Physiology, Yonsei University Wonju College of Medicine)
Sohn, Joon-Hyung (Department of Biochemistry, Yonsei University Wonju College of Medicine)
Yeh, Byung-Il (Department of Biochemistry, Yonsei University Wonju College of Medicine)
Ko, Chang-Mann (Department of Pharmacology, Yonsei University Wonju College of Medicine)
Kong, In-Deok (Department of Physiology, Yonsei University Wonju College of Medicine)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.15, no.1, 2011 , pp. 61-66 More about this Journal
Abstract
P2Y receptors are metabotropic G-protein-coupled receptors, which are involved in many important biologic functions in the central nervous system including retina. Subtypes of P2Y receptors in retinal tissue vary according to the species and the cell types. We examined the molecular and pharmacologic profiles of P2Y purinoceptors in retinoblastoma cell, which has not been identified yet. To achieve this goal, we used $Ca^{2+}$ imaging technique and western blot analysis in WERI-Rb-1 cell, a human retinoblastoma cell line. ATP ($10\;{\mu}M$) elicited strong but transient $[Ca^{2+}]_i$ increase in a concentration dependent manner from more than 80% of the WERI-Rb-1 cells (n=46). Orders of potency of P2Y agonists in evoking $[Ca^{2+}]_i$ transients were 2MeS-ATP>ATP>>UTP=${\alpha}{\beta}$-MeATP, which was compatible with the subclass of $P2Y_1$ receptor. The $[Ca^{2+}]_i$ transients evoked by applications of 2MeS-ATP and/or ATP were also profoundly suppressed in the presence of $P2Y_1$ selective blocker (MRS 2179; $30\;{\mu}M$). $P2Y_1$ receptor expression in WERI-Rb-1 cells was also identified by using western blot. Taken together, $P2Y_1$ receptor is mainly expressed in a retinoblastoma cell, which elicits $Ca^{2+}$ release from internal $Ca^{2+}$ storage sites via the phospholipase C-mediated pathway. $P2Y_1$ receptor activation in retinoblastoma cell could be a useful model to investigate the role of purinergic $[Ca^{2+}]_i$ signaling in neural tissue as well as to find a novel therapeutic target to this lethal cancer.
Keywords
Purinergic receptor; Calcium; Retinoblastoma;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Murakami T, Fujihara T, Nakamura M, Nakata K. P2Y(2) receptor stimulation increases tear fluid secretion in rabbits. Curr Eye Res. 2000;21:782-787.   DOI   ScienceOn
2 Mundasad MV, Novack GD, Allgood VE, Evans RM, Gorden JC, Yerxa BR. Ocular safety of INS365 ophthalmic solution: a P2Y(2) agonist in healthy subjects. J Ocul Pharmacol Ther. 2001;17:173-179.   DOI   ScienceOn
3 Meyer CH, Hotta K, Peterson WM, Toth CA, Jaffe GJ. Effect of INS37217, a P2Y(2) receptor agonist, on experimental retinal detachment and electroretinogram in adult rabbits. Invest Ophthalmol Vis Sci. 2002;43:3567-3574.
4 Fujihara T, Murakami T, Nagano T, Nakamura M, Nakata K. INS365 suppresses loss of corneal epithelial integrity by secretion of mucin-like glycoprotein in a rabbit short-term dry eye model. J Ocul Pharmacol Ther. 2002;18:363-370.   DOI   ScienceOn
5 Nour M, Quiambao AB, Peterson WM, Al-Ubaidi MR, Naash MI. P2Y(2) receptor agonist INS37217 enhances functional recovery after detachment caused by subretinal injection in normal and rds mice. Invest Ophthalmol Vis Sci. 2003;44: 4505-4514.   DOI   ScienceOn
6 Sullivan DM, Erb L, Anglade E, Weisman GA, Turner JT, Csaky KG. Identification and characterization of P2Y2 nucleotide receptors in human retinal pigment epithelial cells. J Neurosci Res. 1997;49:43-52.   DOI   ScienceOn
7 Ryan JS, Baldridge WH, Kelly ME. Purinergic regulation of cation conductances and intracellular $Ca^{2+}$ in cultured rat retinal pigment epithelial cells. J Physiol. 1999;520:745-759.   DOI   ScienceOn
8 Shiue MH, Kulkarni AA, Gukasyan HJ, Swisher JB, Kim KJ, Lee VH. Pharmacological modulation of fluid secretion in the pigmented rabbit conjunctiva. Life Sci. 2000;66:PL105-111.   DOI   ScienceOn
9 Kimura K, Nishimura T, Satoh Y. Effects of ATP and its analogues on [$Ca^{2+}$]i dynamics in the rabbit corneal epithelium. Arch Histol Cytol. 1999;62:129-138.   DOI   ScienceOn
10 Cha SH, Hahn TW, Sekine T, Lee KH, Endou H. Purinoceptormediated calcium mobilization and cellular proliferation in cultured bovine corneal endothelial cells. Jpn J Pharmacol. 2000;82:181-187.   DOI
11 Collison DJ, Duncan G. Regional differences in functional receptor distribution and calcium mobilization in the intact human lens. Invest Ophthalmol Vis Sci. 2001;42:2355-2363.
12 Shahidullah M, Wilson WS. Mobilisation of intracellular calcium by P2Y2 receptors in cultured, non-transformed bovine ciliary epithelial cells. Curr Eye Res. 1997;16:1006-1016.   DOI   ScienceOn
13 Burnstock G, Sillito AM. Nervous control of the eye. Amsterdam: Harwood Academic; 2000.
14 Dyer MA, Bremner R. The search for the retinoblastoma cell of origin. Nat Rev Cancer. 2005;5:91-101.   DOI
15 Barnes S, Haynes LW. Low-voltage-activated calcium channels in human retinoblastoma cells. Brain Res. 1992;598:19-22.   DOI
16 Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev. 2006;58:58-86.   DOI   ScienceOn
17 Xia SL, Wang L, Cash MN, Teng X, Schwalbe RA, Wingo CS. Extracellular ATP-induced calcium signaling in mIMCD-3 cells requires both P2X and P2Y purinoceptors. Am J Physiol Renal Physiol. 2004;287:F204-214.   DOI
18 Ciapa B, Pesando D, Wilding M, Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994;368:875-878.   DOI   ScienceOn
19 Berridge MJ. Calcium signal transduction and cellular control mechanisms. Biochim Biophys Acta. 2004;1742:3-7.   DOI
20 Guo Y, Hong YJ, Jang HJ, Kim MJ, Rhie DJ, Jo YH, Hahn SJ, Yoon SH. Octyl gallate inhibits ATP-induced intracellular calcium increase in PC12 cells by inhibiting multiple pathways. Korean J Physiol Pharmacol. 2010;14:21-28.   DOI
21 Kim DR, Rah SH, Sohn JH, Yeh BI, Ko CM, Park JS, Kim MJ, Lee JW, Kong ID. Calcium mobilization by activation of M(3)/M(5) muscarinic receptors in the human retinoblastoma. J Pharmacol Sci. 2007;105:184-192.   DOI   ScienceOn
22 Wheeler-Schilling TH, Marquordt K, Kohler K, Guenther E, Jabs R. Identification of purinergic receptors in retinal ganglion cells. Brain Res Mol Brain Res. 2001;92:177-180.   DOI
23 Peterson WM, Meggyesy C, Yu K, Miller SS. Extracellular ATP activates calcium signaling, ion, and fluid transport in retinal pigment epithelium. J Neurosci. 1997;17:2324-2337.
24 Fries JE, Wheeler-Schilling TH, Guenther E, Kohler K. Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina. Invest Ophthalmol Vis Sci. 2004;45:3410-3417.   DOI   ScienceOn
25 Pereira Tde O, da Costa GN, Santiago AR, Ambrósio AF, dos Santos PF. High glucose enhances intracellular $Ca^{2+}$ responses triggered by purinergic stimulation in retinal neurons and microglia. Brain Res. 2010;1316:129-138.   DOI
26 Li Y, Holtzclaw LA, Russell JT. Müller cell $Ca^{2+}$ waves evoked by purinergic receptor agonists in slices of rat retina. J Neurophysiol. 2001;85:986-994.   DOI
27 Sanches G, de Alencar LS, Ventura AL. ATP induces proliferation of retinal cells in culture via activation of PKC and extracellular signal-regulated kinase cascade. Int J Dev Neurosci. 2002;20:21-27.   DOI   ScienceOn
28 Ward MM, Fletcher EL. Subsets of retinal neurons and glia express P2Y1 receptors. Neuroscience. 2009;160:555-566.   DOI   ScienceOn
29 Sholl-Franco A, Fragel-Madeira L, Macama Ada C, Linden R, Ventura AL. ATP controls cell cycle and induces proliferation in the mouse developing retina. Int J Dev Neurosci. 2010;28: 63-73.   DOI   ScienceOn
30 McFall RC, Nagy RM, Nagle BT, McGreevy LM. Scanning electron microscopic observation of two retinoblastoma cell lines. Cancer Res. 1978;38:2827-2835.
31 von Kugelgen I, Wetter A. Molecular pharmacology of P2Yreceptors. Naunyn Schmiedebergs Arch Pharmacol. 2000;362: 310-323.   DOI   ScienceOn
32 Ralevic V, Burnstock G. Receptors for purines and pyrimidines. Pharmacol Rev. 1998;50:413-492.
33 Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007;64:1471-1483.   DOI   ScienceOn
34 Hwang SM, Koo NY, Choi SY, Chun GS, Kim JS, Park K. P2X7 Receptor-mediated membrane blebbing in salivary epithelial cells. Korean J Physiol Pharmacol. 2009;13:175-179.   DOI
35 Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA, Weisman GA. International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 2006;58:281-341.   DOI   ScienceOn
36 Boeynaems JM, Communi D, Savi P, Herbert JM. P2Y receptors: in the middle of the road. Trends Pharmacol Sci. 2000;21:1-3.   DOI   ScienceOn
37 Janssens R, Boeynaems JM. Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol. 2001;132:536-546.   DOI   ScienceOn
38 Fries JE, Wheeler-Schilling TH, Kohler K, Guenther E. Distribution of metabotropic P2Y receptors in the rat retina: a single-cell RT-PCR study. Brain Res Mol Brain Res. 2004;130:1-6.   DOI
39 Cowlen MS, Zhang VZ, Warnock L, Moyer CF, Peterson WM, Yerxa BR. Localization of ocular P2Y2 receptor gene expression by in situ hybridization. Exp Eye Res. 2003;77:77-84.   DOI   ScienceOn
40 Fries JE, Goczalik IM, Wheeler-Schilling TH, Kohler K, Guenther E, Wolf S, Wiedemann P, Bringmann A, Reichenbach A, Francke M, Pannicke T. Identification of P2Y receptor subtypes in human muller glial cells by physiology, single cell RT-PCR, and immunohistochemistry. Invest Ophthalmol Vis Sci. 2005;46:3000-3007.   DOI   ScienceOn