• 제목/요약/키워드: Purine-N : total-N

검색결과 30건 처리시간 0.025초

Purine Derivatives Excreted in Urine as an Indicator Estimating Microbial Yield from the Rumen: A - Review

  • Kanjanapruthipong, J.;Len, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제11권3호
    • /
    • pp.209-216
    • /
    • 1998
  • The paper presented here is aimed at increasing knowledge on purine metabolism in ruminants and hence the quantification of microbial cells entering the small intestine from urinaη excretion of purine derivatives. Nucleic acid metabolisms of micro-organisms in the rumen, digestion and absorption of nucleic acids entering the intestines, metabolisms of absorbed and endogenous purines involving de novo synthesis of nucleic acids in the ruminants host, and the relationship between absorbed and excreted purines are reviewed. Principal concerns about an amount of purine derivatives excreted in urine in relation to a change in purine-N: total-N ratios in rumen microbes that leave the rumen are discussed. The use of urinary excretion of purine derivatives as an indicator of the amount of microbial biomass leaving the rumen has to be done with some caution since it may be impossible to get a representative sample of microbes entering the intestine and thus yield estimates are relative rather than absolute.

EFFECT OF LEVEL OF FEED INTAKE ON THE EXCRETION OF PURINE DERIVATIVES AND PURINE DERIVATIVES TO CREATININE RATIO IN THE URINE OF SHEEP

  • Han, Y.K.;Shin, H.T.;Landis, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권3호
    • /
    • pp.465-468
    • /
    • 1992
  • Urinary purine derivatives and creatinine excretion was measured in a total of 4 white Alpine sheep. They were given diets 718 to 1060 g/kg dry matter (DM) of roughage. The crude protein content of this diets was on average $93.87{\pm}5.57g$ in kg DM. Purine derivatives-N excretion increased linearly with incremental DM intake and was significantly correlated (n = 16) with amounts of digestible organic matter (DOM) intake: allantoin-N (mg) = 1.205 (${\pm}0.070$) $\times$ DOM (g) - 136.709 (${\pm}37.399$), r = 0.9770, RSD = 22.97; uricacid-N (mg) = 0.131 (${\pm}0.041$) $\times$ DOM (g) + 11.380 (${\pm}21.881$), r = 0.6306, RSD = 13.44; Hypoxanthine-N (mg) = 0.049 (${\pm}0.014$) $\times$ DOM (g) - 28.640 (${\pm}7.708$), r = 0.6544, RSD = 4.73; total purine derivatives-N (mg) = 1.385 (${\pm}0.083$) $\times$ DOM (g) - 90.261 (${\pm}44.552$), r = 0.9706, RSD = 27.47. Microbial protein synthesis per kg DOM was estimated of 113 g. The urinary creatinine-N excretion was on average 9.10 mg/kg live weight (LW) with a standard error of 0.12 mg creatinine-N per kg LW. The excretion of creatinine excreton was not related to feed intake. Daily creatinine excretion (mg/d) was calculated from individual LW measurements and the average creatinine excretion (mg/kg LW). It was possible to predict the daily urinary purine derivatives excretion (r = 0.9720 for allantoin, r = 0.9886 for total purine derivatives) from the ratio of purine derivatives (mg/100 ml) and creatinine (mg/100 ml) in the urine and the daily creatinine excretion.

Effect of Ruminal NH3-N Levels on Ruminal Fermentation, Purine Derivatives, Digestibility and Rice Straw Intake in Swamp Buffaloes

  • Wanapat, M.;Pimpa, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권6호
    • /
    • pp.904-907
    • /
    • 1999
  • The experiment was aimed at studying the effect of ruminal $NH_3-N$ levels on ruminal fermentation, microbial population, urinary purine derivative excretion, digestibility and rice straw intake in swamp buffaloes. Five, 3 to 4 years old, rumen fistulated swamp buffaloes were randomly assigned according to a $5{\times}5$ Latin square design to rceive five different intraruminal infusions of $NH_4HCO_3$ (0, 150, 300, 450 and 600 g/d) on a continuous daily basis. Rice straw as a roughage was offered ad libitum while concentrate was given at 0.8% BW daily. The results were that as levels of $NH_4HCO_3$ increased, ruminal $NH_3-N$ concentrations increased from 7.1 to 34.4 mg%. The highest digestibility and voluntary straw intakes were found at 13.6 to 17.6 mg% ruminal $NH_3-N$ levels; straw intake was highest at 13.6 mg%. Total bacterial and protozoal counts linearly increased as the ruminal $NH_3-N$ increased and were highest at 17.6 mg%. Total urinary purine derivatives and allantoin excretion were highest (44.0, 37.4 mM/d) at 17.6 mg% ruminal $NH_3-N$. Highest total VFAs (115 mM) were obtained a 13.6 mg% ruminal $NH_3-N$ while blood urea nitrogen significantly increased as ruminal $NH_3-N$ increased. The results from this experiment suggest that optimum ruminal $NH_3-N$ in swamp buffaloes is higher than 13.6 mg%, for improving rumen ecology, microbial protein synthesis, digestibility and straw intake.

DETERMINATION OF PURINE AND PYRIMIDINE BASES IN RUMEN MICRO-ORGANISMS BY REVERSED PHASE HPLC AFTER HYDROLYTIC DIGESTION UNDER PRESSURE

  • Han, Y.K.;Landis, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제4권2호
    • /
    • pp.161-164
    • /
    • 1991
  • A rapid and accurate method is described for the determination of nucleo-bases in rumen micro-organisms. A procedure to satisfactorily hydrolyse the micro-organisms involving reaction with a mixture of readily volatile organic acids (acetic and formic acids) under high pressure, is proposed, and optimal conditions for an analytical procedure with reversed phase HPLC is described. The following nucleobases contents (mmol/kg DM) of rumen micro-organisms were found: Adenine (Ade), 82.62; Guanine (Gua), 61.34; Cytosine (Cyt), 84.61; Thymine (Thy), 35.74; Uracil (Ura), 68.62; Hypoxanthine (Hxn), 13.06; Xanthine (Xn), 8.35. Total purine-N content (g/kg N) of rumen micro-organisms were 99.60. The nucleic acid N content (g/kg N) of microbial isolates were: RNA-N, 109.9; DNA-N, 50.9.

Measurement of Microbial Protein Supply in Murrah Buffaloes (Bubalus bubalis) Using Urinary Purine Derivatives Excretion and PDC Index

  • Dipu, M.T.;George, S.K.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권3호
    • /
    • pp.347-355
    • /
    • 2006
  • A study was conducted to predict the rumen microbial protein production based on urinary excretion of purine derivatives in buffaloes fed a diet of wheat straw and concentrate (40:60) at four fixed levels of feed intake. (95, 80, 60 and 40% of preliminary voluntary feed intake) following experimental protocol of IAEA (Phase I). The buffaloes were allocated according to a $4{\times}4$ latin square design. The urinary allantoin, uric acid, total PD excretion (mmol/d) in treatments L-95, L-80, L-60 and L-40 was 20.13, 16.00, 12.96 and 9.17; 1.88, 2.12, 2.11 and 2.15; 22.01, 18.12, 15.07 and 11.32, respectively and were significantly (p<0.05) different among treatments except for uric acid. The rate of PD excretion (mmol/d) was positively correlated with the digestible organic matter intake. Variations were observed in PD and creatinine concentration in spot samples collected at 6-hour interval. However, daily PD:Creatinine ratio (PDC index) appears to be a reasonably good predictor of microbial-N supply. The contribution of basal purine excretion to total excretion of purine derivatives (PD) was determined in pre-fasting period followed by a fasting period of 6 d (Phase II). Daily PD and creatinine excretion (mmol/kg $W^{0.75}$) during fasting averaged 0.117 and 0.456 respectively for buffaloes. The excretion rates of PD decreased significantly (p<0.01) during fasting compare to pre-fasting period, the urinary creatinine excretion remained almost similar. Except for creatinine, plasma concentration of target parameters significantly (p<0.01) declined during fasting. Likewise, glomerular filtration rate (GFR) and renal clearance of allantoin and uric acid also decreased. Based on the PD excretion rates during fasting and at different levels of feed intake obtained in this study, a relationship between daily urinary PD excretion (Y-mmol) and microbial purine absorption (X-mmol) was developed for buffaloes as Y = 0.74X+0.117 kg $W^{0.75}$. The microbial N supply (g/kg DOMI) remained statistically similar irrespective of dietary treatment. The results showed that excretion of urinary purine derivatives is positively correlated with the levels of feed intake in Murrah buffaloes and thus, estimation of urinary purine derivatives and PDC index could be used to determine microbial nitrogen supply when there is large variation in level of feed intake.

Potential of Sarson Saag Waste-a Cannery Waste as Ruminant Feed

  • Bakshi, M.P.S.;Kaushal, S.;Wadhwa, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권4호
    • /
    • pp.479-482
    • /
    • 2005
  • The nutritional worth of Sarson Saag Waste (SSW), a cannery waste, was assessed in comparison with conventional complete diet as a total mixed ration (TMR), and a conventional green fodder, Avena sativa. Each diet was offered ad libitum, supplemented with mineral mixture and common salt, to 4 male murrah buffaloes. The control TMR was made iso-nitrogenous to SSW. Simultaneously, each diet was offered to 3 rumen fistulated male buffaloes for assessing the biochemical changes in the rumen. The nutrient digestibility of unconventional SSW was comparable to that of conventional green fodder-A. sativa but significantly (p<0.05) higher than that of control TMR. The tri-chloro acetic acid (TCA) precipitable-N in the strained rumen liquor of animals fed SSW was considerably higher than that of animals fed A.sativa. The urinary excretion of total purine derivatives was comparable in animals fed SSW and conventional green fodder but significantly (p<0.05) higher than those fed conventional control TMR. The significantly (p<0.05) lower purine nitrogen index (PNI) in animals fed control TMR resulted in significantly (p<0.05) lower microbial protein synthesis than that in animals fed SSW and conventional green fodder. The N-excretion as per cent of nitrogen intake was significantly (p<0.05) lower in animals fed SSW as compared to either of the conventional feeds tested, resulting in significantly (p<0.05) higher Nretention and apparent biological value. SSW supplemented with mineral mixture could serve as an excellent source of nutrients for ruminants.

Estimation of Rumen Microbial Protein Supply Using Urinary Purine Derivatives Excretion in Crossbred Calves Fed at Different Levels of Feed Intake

  • Singh, M.;Sharma, K.;Dutta, N.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1567-1574
    • /
    • 2007
  • A study was carried out to study the response of total purine derivatives (PD) excretion in urine to determine microbial N (MN) supply at four fixed levels of feed intake (namely 95, 80, 60 and 40% of voluntary intake). The crossbred (CB) calves were allocated according to a $4{\times}4$ Latin Square Design and fed wheat straw and concentrate (1:1). The rate of PD excretion (mmol/d) as a linear function of feed intake was 15.85/kg DMI and 20.12/kg DOMI. Based on the endogenous and PD excretion rates obtained in this study, a relationship between daily urinary PD excretion (Y, mmol) and daily microbial protein supply (X, mmol) was developed for crossbred calves as Y = 0.83X+0.296 kg $W^{0.75}$. The derived microbial N values using this equation differed (p<0.001) among the 4 groups and was the highest in L-95 followed by L-80, L-60 and L-40. The relationship between urinary nitrogen loss (Y, g/d) and DOMI (X, kg/d) was established as: Y = 6.038X+21.753 ($r^2$ = 0.663, p<0.01). When urinary excretion of PD (Y, mmol/d) was plotted against intake of DM and DOM (X, kg/d), the equations obtained were: Y = 7.1711X+8.674 ($r^2$ = 0.889, p<0.01) and Y = 12.434X+7.683 ($r^2$ = 0.896, p<0.01), respectively. The proportional contribution of allantoin and uric acid to total PD remained stable irrespective of level of feed intake. Similarly, urinary excretion of creatinine did not differ (p>0.05) between animals fed at different levels. The MN supply was the highest to animals at intake levels L-95, and decreased linearly with corresponding decrease in feed intake. However, the MN supply when expressed per kg DOMI remained statistically (p>0.05) similar irrespective of level of intake. The results revealed that the excretion of urinary purine derivatives were positively correlated with the level of feed intake as well as rumen microbial supply and thus it could be a good indicator for measuring the microbial protein supply and nutritional status of animals.

Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

  • Piao, Min Yu;Kim, Hyun-J.;Seo, J.K.;Park, T.S.;Yoon, J.S.;Kim, K.H.;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제25권11호
    • /
    • pp.1568-1574
    • /
    • 2012
  • Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal's body weight) in a $3{\times}3$ Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal $NH_3$-N content of the LS group at three hours after feeding was significantly higher (p<0.05) than that of the other groups; however, the mean values of ruminal $NH_3$-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers.

INFLUENCE OF AMINO ACID SUPPLEMENTS TO A STRAW-MAIZE-BASED UREA DIET ON DUODENAL DIGESTA FLOW AND DIGESTION IN SHEEP

  • Fujimaki, T.;Kobayashi, Y.;Wakita, M.;Hoshino, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제7권1호
    • /
    • pp.137-145
    • /
    • 1994
  • Amino acid (AA) substituted diets had no influence on rumen levels of total volatile fatty acids (VFA), ammonia and ${\alpha}$-amino-N, but tended to increase molar proportions of isovalerate and counts of total viable AA utilizing and celluloytic bacteria in the rumen as compared with the control urea diet. The AA diets did not affect daily flow to the duodenum of dry matter (DM), organic mater (OM) and acid detergent fibre (ADF), and rumen digestibility of these nutrients. However, the AA diets, in particular the 10 essential AA (EAA) diet improved total digestibility of DM, OM and ADF by decreasing faecal output of these fractions. Although N flow to the duodenum and N retention were not affected with the dietary treatments, duodenal bacterial flow appeared to increase by the AA diets when it was estimated by means of 2,6-diaminopimelic acid (DAP) and nucleic acid-purine bases (PB) as markers. The results suggest that AA supplements to a urea diet could improve feed utilization by stimulating microbial activity and proliferation in the rumen but and increased microbial activity per se is not necessarily associated with improvement of feed conversion.

Effects of Synchronization of Carbohydrate and Protein Supply on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

  • Seo, Ja-Kyeom;Yang, Ji-Young;Kim, Hyun-J.;Upadhaya, Santi Devi;Cho, W.M.;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1455-1461
    • /
    • 2010
  • Three rumen-cannulated Holstein steers were fed three diets, each with a different synchrony index (SI) (LS: 0.77, MS: 0.81, and HS: 0.83), in order to examine the effect of diet on rumen fermentation, nitrogen balance, and microbial protein synthesis. Synchrony index was calculated based on the carbohydrate and crude protein fractions of each ingredient and their degradation rates. Feeding the steers diets with different SIs did not influence dry matter, crude protein, NDF, or ADF digestibility. The concentrations of total and individual VFA in the rumens of steers that were fed the two higher-SI diets were higher than in those fed the low-SI diet (p<0.05), but there was no significant difference between the two higher-SI diets. One hour after feeding, steers on the LS diet had lower ruminal pHs than did those fed the MS or HS diets (p<0.05), and animals on the LS diet generally showed higher ruminal $NH_3$-N levels than did animals on the other diets, with the 4-h post-feeding difference being significant (p<0.05). Steers receiving the LS diet excreted more nitrogen (N) in their urine than did those on the two higher-SI diets (p<0.05), and the total N excretion of those on the LS diet was also higher (p<0.05). Microbial N levels calculated from the concentration of urinary purine derivatives were generally higher when the SI was higher, with the highest microbial protein synthesis being produced by steers on the HS diet (p<0.05). In conclusion, in the current study, ingestion of a synchronous diet by Holstein steers improved microbial protein synthesis and VFA production and decreased total N output.