• Title/Summary/Keyword: Purification and characterization

Search Result 1,044, Processing Time 0.033 seconds

Present and prospect of plant metabolomics (식물대사체 연구의 현황과 전망)

  • Kim, Suk-Weon;Kwon, Yong-Kook;Kim, Jong-Hyun;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2010
  • Plant metabolomics is a research field for identifying all of the metabolites found in a certain plant cell, tissue, organ, or whole plant in a given time and conditions and for studying changes in metabolic profiling as time goes or conditions change. Metabolomics is one of the most recently developed omics for holistic approach to biology and is a kind of systems biology. Metabolomics or metabolite fingerprinting techniques usually involves collecting spectra of crude solvent extracts without purification and separation of pure compounds or not in standardized conditions. Therefore, that requires a high degree of reproducibility, which can be achieved by using a standardized method for sample preparation and data acquisition and analysis. In plant biology, metabolomics is applied for various research fields including rapid discrimination between plant species, cultivar and GM plants, metabolic evaluation of commercial food stocks and medicinal herbs, understanding various physiological, stress responses, and determination of gene functions. Recently, plant metabolomics is applied for characterization of gene function often in combination with transcriptomics by analyzing tagged mutants of the model plants of Arabidopsis and rice. The use of plant metabolomics combined by transcriptomics in functional genomics will be the challenge for the coming year. This review paper attempted to introduce current status and prospects of plant metabolomics research.

Characterization of Homocysteine ${\gamma}$-Lyase from Submerged and Solid Cultures of Aspergillus fumigatus ASH (JX006238)

  • El-Sayed, Ashraf S.;Khalaf, Salwa A.;Aziz, Hani A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.499-510
    • /
    • 2013
  • Among 25 isolates, Aspergillus fumigatus ASH (JX006238) was identified as a potent producer of homocysteine ${\gamma}$-lyase. The nutritional requirements to maximize the enzyme yield were optimized under submerged (SF) and solid-state fermentation (SSF) conditions, resulting in a 5.2- and 2.3-fold increase, respectively, after the last purification step. The enzyme exhibited a single homogenous band of 50 kDa on SDS-PAGE, along with an optimum pH of 7.8 and pH stability range of 6.5 to 7.8. It also showed a pI of 5.0, as detected by pH precipitation with no glycosyl residues. The highest enzyme activity was obtained at $37-40^{\circ}C$, with a $T_m$ value of $70.1^{\circ}C$. The enzyme showed clear catalytic and thermal stability below $40^{\circ}C$, with $T_{1/2}$ values of 18.1, 9.9, 5.9, 3.3, and 1.9 h at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. Additionally, the enzyme $K_r$ values were 0.002, 0.054, 0.097, 0.184, and 0.341 $S^{-1}$ at $30^{\circ}C$, $35^{\circ}C$, $40^{\circ}C$, $50^{\circ}C$, and $60^{\circ}C$, respectively. The enzyme displayed a strong affinity to homocysteine, followed by methionine and cysteine when compared with non-S amino acids, confirming its potency against homocysteinuria-related diseases, and as an anti-cardiovascular agent and a specific biosensor for homocysteinuria. The enzyme showed its maximum affinity for homocysteine ($K_m$ 2.46 mM, $K_{cat}\;1.39{\times}10^{-3}\;s^{-1}$), methionine ($K_m$ 4.1 mM, $K_{cat}\;0.97{\times}10^{-3}\;s^{-1}$), and cysteine ($K_m$ 4.9 m M, $K_{cat}\;0.77{\times}10^{-3}\;s^{-1}$). The enzyme was also strongly inhibited by hydroxylamine and DDT, confirming its pyridoxal 5'-phosphate (PLP) identity, yet not inhibited by EDTA. In vivo, using Swiss Albino mice, the enzyme showed no detectable negative effects on platelet aggregation, the RBC number, aspartate aminotransferase, alanine aminotransferase, or creatinine titer when compared with negative controls.

Purification and Characterization of Myrosinase in Dolsan Leaf Mustard(Brassica juncea) and Changes in Myrosinase Activity during Fermentation of Leaf Mustard Kimchi (돌산갓의 Myrosinase 분리 정제 및 갓김치 숙성 중 Myrosinase 활성도의 변화)

  • Park, Jeong-Ro;Park, Seok-Kyu;Cho, Young-Sook;Chun, Soon-Sil
    • Journal of the Korean Society of Food Culture
    • /
    • v.9 no.2
    • /
    • pp.137-142
    • /
    • 1994
  • Myrosinase in leaf mustard was purified and characterized to furnish a grounding information for utilizing the pungent taste and the potential antimicrobial capability of Dolsan leaf mustard to enhance the taste and storage life of kimchi. When myrosinase was purified from leaf mustard through a series of DEAE Sephadex, chromatofocusing and Con A Sepharose column chromatography, specific activity of the enzyme increased 7107-fold compared with that of crude enzyme preparation, and 18.8% yield was obtained. The purified myrosinase showed the optimum pH of 5.9, isoelectric point of 4.6, molecular weight of 129 kD, Km of 0.206 mM, and Vmax of $2.039\;{\mu}M{\cdot}min^{-1}{\cdot}mg\;protein^{-1}$, respectively. The optimum concentration of L-ascorbic for the maximum activity of the enzyme was 0.6 mM, and the enzyme activity decreased at a higher concentration of L-ascorbic acid than 0.6 mM, showing almost no enzyme activity at a L-ascorbic acid concentration of higher than 2.0 mM. Myrosinase activity in leaf mustard kimchi immediately after the kimchi was formulated was shown to be about 70 nmol/min/mg protein which decreased rapidly after 3 days of storage at $20^{\circ}C$, showing that less than half and almost none of the enzyme activity was retained in 4 and 10 days of storage, respectively.

  • PDF

Gene cloning of β-mannanase C from Cellulosimicrobium sp. YB-43 and characterization of the enzyme (Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성)

  • Yoon, Ki-Hong
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.126-135
    • /
    • 2018
  • The characteristics of enzyme and gene for mannanase B had been reported from Cellulosimicrobium sp. YB-43 producing some kind of mannanase. A gene coding for the enzyme, named mannanase C (ManC), was expected to be located downstream of the manB gene. The manC gene was cloned by polymerase chain reaction and sequenced completely. From this nucleotide sequence, ManC was identified to consist of 448 amino residues and contain a carbohydrate binding domain CBM2 besides a catalytic domain, which was homologous to mannanase belonging to the glycosyl hydrolase family 5. The catalytic domain of ManC showed the highest amino acid sequence similarity of 55% with the mannanases from Streptomyces sp. SirexAA-E (55.8%; 4FK9_A) and S. thermoluteus (57.6%; BAM62868). The His-tagged ManC (HtManC) lacking N-terminal signal peptide with hexahistidine at C-terminus was produced and purified from cell extract of recombinant Escherichia coli. The purified HtManC showed maximal activity at $65^{\circ}C$ and pH 7.5, with no significant change in its activity at pH range from 7.5 to 10. HtManC showed more active on konjac and locust bean gum (LBG) than guar gum and ivory nut mannan (ivory nut). Vmax and Km values of the HtManC for LBG were 68 U/mg and 0.45 mg/ml on the optimal condition, respectively. Mannobiose and mannotriose were observed on TLC as major products resulting from the HtManC hydrolysis of mannooligosacharides. In addition, mannobiose and mannose were commonly detected as the hydrolyzed products of LBG, konjac and ivory nut.

Purification and characterization of the extracellular alginate lyase from Streptomyces sp. MET 0515 (Streptomces sp. MET 0515의 균체외 Alginate lyase의 정제 및 특성)

  • Kim, Hyun-Kyoung;Lee, Jae-Chang;Kang, Nam-Hyun;Kim, Song-Hee;Kim, Jong-Guk;Chung, Ki-Chul
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.625-633
    • /
    • 2007
  • We isolated a new extracellular alginate lyase-producing microorganism, which displayed alginate-depolymerizing activity in plate assays, from coastal soils in Wando, Jeollanam-do, Korea. This alginate-depolymerizing bacterium belonged to the genus Streptomyces and it was named Streptomyces sp. MET 0515. An extracellular alginate lyase(ALY1) secreted by Streptomyces sp. MET 0515, was purified to homogeneity by a combination of acetone precipitation, anion-exchange chromatography (Q-Sepharose and DEAE-Sepharose) and Sephacryl S-200 HR gel filtration chromatography. Its molecular mass was 26 kDa as determined by SDS-PACE analysis. The enzyme had an optimal temperature of $70^{\circ}C$ for its activity, and was most active at pH 7.5. The thermal and pH stability were $0-50^{\circ}C$, and pH 6.0-9.0, respectively. The enzyme activity was stimulated by 1mM $Mn^{2+}$, and inhibited by 1mM $Fe^{3+}$, 1mM EDTA and 1mM $Zn^{2+}$. Preliminary analysis of substrate specificity showed that this alginate lyase had activity on both poly-alpha 1,4-L-guluronate and poly-beta 1,4-D-mannuronate in the alginate molecule.

Purification, Characterization, and Gene Cloning of Chitosanase from Bacillus cereus H-l (Bacillus cereus H-1으로부터 Chitosanas리 분리와 특성연구 및 유전자 클로닝)

  • Jang, Hong-Ki;Yi, Jae-Hyoung;Kim, Jung-Tae;Lee, Keun-Eok;Park, Shin-Geon
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.3
    • /
    • pp.216-223
    • /
    • 2003
  • A 1.3-kb of chitosanase gene (choA) encoding 45-kDa polypeptide was cloned, expressed, and characterized from a newly isolated Bacillus cereus H-1. The chitosanase protein (ChoA) of B. cereus H-l was purified to homogeneity by ammonium sulfate precipitation and CM-sephadex column chromatography. Optimum pH was around 7, and stable pH range in the incubation at 50 C was 4-11. Optimum temperature was around 50 C, and enzyme activity was relatively stable below 45 C. ChoA showed the activities toward carboxymethyl cellulose (CMC) in addition to soluble or glycol chitosan. Based on MALDI-TOF MS analysis of purified ChoA, the entire amino acid sequence of ChoA was interpreted by database searching of previously known Bacillus chitosanases. A 1.6 kb of PCR product of corresponding chitosanase gene was obtained and its DNA sequence was determined. The deduced amino acid of choA revealed that ChoA have a 98% homology with those of Bacillus sp. No.7-M strain and Bacillus sp. KCTC0377BP. The recombinant ChoA protein was expressed in E. coli DH5$\alpha$. Deduced amino acid comparison of choA with other chitosanases suggested that it belongs to family 8 microbial endo-chitosanase with chitosanase-cellulase activity.

Purification and Characterization of Phytase from Bacillus subtilis (Bacillus subtilis가 생산하는 Phytase의 정제 및 특성)

  • Koh Hyun-Jung;Chu In-Ho;Chung Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • A bacterial strain producing high level of a phytase was isolated from cattle feces and identified as Bacillus subtilis, and designated as Bacillus sp. CF 5-26. The production of the phytase from Bacillus sp. CF 5-26 reached the highest level after 72 hours at $37^{\circ}C$. The optimum condition of the media for the production of phytase was 10% rice bran extract, 0.1% whey protein powder, $0.01%\;CaCl_{2},\;0.01%\;KH_{2}PO_4$. The phytase was purified 20.3 folds with ethanol precipitation, Sephadex G-100, CM Sepharose CL-6B and Sephacryl S-100-HR column chromatography. The molecular weight of the purified enzyme was estimated to be 66 kDa on SDS-polyacrylamide gel electrophoresis. The purified phytase activity was stable up pH 5.0, 7.0, 11.0 and the remaining activity was 50% when it was treated at $100^{\circ}C$ for 1 hour. The substrate specificity of phytase was most active against sodium phytate and inositol polyphosphate compound. And the phytase hydrolysed tripolyphosphate and pyrophosphate a little. The Km value for the sodium phytate was 0.64 mM and the Vmax value was $4.41\;{\mu}mol/min$.

Isolation of an Agarolytic Bacteria, Cellvibrio mixtus SC-22 and The Enzymatic Properties (한천분해세균 Cellvibrio mixtus SC-22의 분리 및 효소적 특성)

  • Cha, Jeong-Ah;Kim, Yoo-Jin;Seo, Yung-Bum;Yoon, Min-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.52 no.4
    • /
    • pp.157-162
    • /
    • 2009
  • An agar-liquefying bacteria (SC-22), which produces a diffusible agarase that caused agar softening around the colony was isolated from Daecheong lake in Korea. Chemotaxanomic and phylogenetic analyses based on 16S rRNA gene sequences revealed the strain was classified as Cellvibrio mixtus SC-22. The isolate SC-22 showed maximal extracellular agarase activity with 58.5 U/mL after 48 h cultivation in the presence of 0.2% agar. It was observed that the isolate produced two kinds of extracellular and three kinds of intracellular isoenzymes. The major agarase was purified from the culture filtrate of agarolytic bacteria by ammonium sulfate precipitation, anion exchange and gel filtration column chromatographic methods. The molecular mass of the purified enzyme was estimated to be 25 kDa by SDS-PAGE. The optimum pH and temperature of the purified enzyme were pH 7.0 and $50^{\circ}C$, respectively. The agarase activity was activated by $Fe^{2+}$, $Na^+$ and $Ca^{2+}$ ions while it was inhibited by $Hg^{2+}$, $Mn^{2+}$ and $Cu^{2+}$ at 1 mM concentration. The predominant hydrolysis product of agarose by the enzyme was galactose and disaccharide on TLC, indicating the cleavage of $\beta$-1,4 linkage in a random manner. The enzyme showed high substrate specificity for only agar and agarose among various polysaccharides.

Purification and Characterization of Chinese Cabbage Pectinesterase (배추 펙틴에스테라제의 정제 및 특성)

  • Ko, Young-Hwan;Park, Kwan-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-241
    • /
    • 1984
  • Two fractions of pectinesterase from Chinese cabbage were isolated by ammonium sulfate fractionation, ion exchange chromatography on DEAE-cellulose and Sephadex G-150 gel filtration. The fraction F-A and F-B were purified approximately 340- and 10-fold. The similar salt effects and pH optima (pH 7.5-8.0) were obtained for the two pectinesterase fractions. The maximum activity of both two. fractions were obtained at 20-50mM of divalent rations and at 250mM of monovalent rations. The apparent Michaelis constant of the F-A was 0.01% for citrus pectin. The temperature optima for F-A and F-B were $48^{\circ}$ and $55^{\circ}C$, respectively and both fractions were stable in the region of pH 5.0-8.0 at room temperature. The thermal inactivation of the two fractions followed the first order reaction kinetics. From D and Z-values obtained the thermal resistance of the two fractions were characterized.

  • PDF

Protease Properties of Protease-Producing Bacteria Isolated from the Digestive Tract of Octopus vulgaris (Octopus vulgaris의 장관으로부터 분리한 단백질 분해효소 생성 균주와 생성된 효소의 특성)

  • Liu, Qing;Ren, Pei;Piao, Meizi;Yang, Ji-Young
    • Journal of Life Science
    • /
    • v.23 no.12
    • /
    • pp.1486-1494
    • /
    • 2013
  • A high protease-producing strain was isolated and identified from the digestive tract of octopus vulgaris by detecting a hydrolysis circle of protease and its activity. The strain was identified by morphology observation, biochemical experiments, and 16S rRNA sequence analysis. The protease obtained from the strain was purified by a three-step process involving ammonium sulfate precipitation, carboxy methyl-cellulose (CM-52) cation-exchange chromatography, and DEAE-Sephadex A50 anion-exchange chromatography. The properties of protease were characterized as well. The strain Bacillus sp. QDV-3, which produced the highest activity of protease, was isolated. On the basis of the phenotypic and biochemical characterization and 16S rRNA gene-sequencing studies, the isolate was identified as follows: domain: Bacteria; phylum: Firmicutes; class: Bacilli; order: Bacillales; family: Bacillaceae; and genus: Bacillus. The isolate was shown to have a 99.2% similarity with Bacillus flexus. A high active protease designated as QDV-E, with a molecular weight of 61.6 kDa, was obtained. The enzyme was found to be active in the pH range of 9.0-9.5 and its optimum temperature was $40^{\circ}C$. The protease activity retained more than 96% at the temperature of $50^{\circ}C$ for 60 min. Phenylmethylsulfonyl fluoride (PMSF) inhibited the enzyme activity, thus confirming that this protease isolated from Bacillus sp. QDV-3 is an alkaline serine protease. Metal ions, $Mn^{2+}$ and $Mg^{2+}$, were determined to enhance the protease activity, whereas $Ba^{2+}$, $Zn^{2+}$, and $Cu^{2+}$ were found to inactivate the enzyme.