• 제목/요약/키워드: Pure sciences

검색결과 789건 처리시간 0.024초

Management Plan to Consider Ecological Characteristic of Pinus densiflora Community in Seoul (서울시 소나무림의 생태적 특성에 따른 관리방안 연구)

  • Lee, Soo-Dong;Lee, Kyoung-Jae;Choi, Jin-Woo
    • Korean Journal of Environment and Ecology
    • /
    • 제23권3호
    • /
    • pp.258-271
    • /
    • 2009
  • Various environmental parameters change and ecological succession often lead to decline of Pinus densiflora forest in Seoul. Due to decline of it, we proposed the ecological management for conserving and improving from decrease of its dominant area on there. We analysed the P. densiflora forest's classification and suggested its ecological management that based on relation to competition between dominant species in the upper tree layer, the presence of competitive species in shrub layer and vegetation management standard. The Pinus densiflora forest types has been classified 6 types by ecological characteristics. The results from categorized its types are following as; 1) Pinus densiflora pure forest type; edaphic climax Pinus densiflora forest(26.1%), Pinus densiflora pure forest(21.5%). 2) the forest of Pinus densiflora and other species that compete with each other type; Pinus densiflora-Quercus mongolica forest(28.0%), Pinus densiflora-Pinus rigida forest(13.1%), Pinus densiflora-Quercus acutissima(4.2%). We conclude that the results in these kind of 4 types; Pinus densiflora pure forest type where possible to maintain the forest by edaphic climax, human trampling damage, vegetation management(e.x. remove the competition species, shrub layers management etc.) are mainly need to negative management. Whereas, the others 4 types; Pinus densiflora and other species(Quercus variabilis, foreign species, naturalized species etc.) that compete with each other types are need to positive management such as manage the same niche competition species, shrub layers management, remove the foreign species, naturalized species etc.. In these kinds of ecological management are very necessary to maintain Pinus densiflora forest.

Upregulation of Mir-34a in AGS Gastric Cancer Cells by a PLGA-PEG-PLGA Chrysin Nano Formulation

  • Mohammadian, Farideh;Abhari, Alireza;Dariushnejad, Hassan;Zarghami, Faraz;Nikanfar, Alireza;Pilehvar-Soltanahmadi, Yones;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8259-8263
    • /
    • 2016
  • Background: Nano-therapy has the potential to revolutionize cancer therapy. Chrysin, a natural flavonoid, was recently recognized as having important biological roles in chemical defenses and nitrogen fixation, with anti-inflammatory and anti-oxidant effects but the poor water solubility of flavonoids limitstheir bioavailability and biomedical applications. Objective: Chrysin loaded PLGA-PEG-PLGA was assessed for improvement of solubility, drug tolerance and adverse effects and accumulation in a gastric cancer cell line (AGS). Materials and Methods: Chrysin loaded PLGA-PEG copolymers were prepared using the double emulsion method (W/O/W). The morphology and size distributions of the prepared PLGA-PEG nanospheres were investigated by 1H NMR, FT-IR and SEM. The in vitro cytotoxicity of pure and nano-chrysin was tested by MTT assay and miR-34a was measured by real-time PCR. Results: 1H NMR, FT-IR and SEM confirmed the PLGA-PEG structure and chrysin loaded on nanoparticles. The MTT results for different concentrations of chrysin at different times for the treatment of AGS cell line showed IC50 values of 68.2, 56.2 and $42.3{\mu}M$ and 58.2, 44.2, $36.8{\mu}M$ after 24, 48, and 72 hours of treatment, respectively for chrysin itslef and chrysin-loaded nanoparticles. The results of real time PCR showed that expression of miR-34a was upregulated to a greater extent via nano chrysin rather than free chrysin. Conclusions: Our study demonstrates chrysin loaded PLGA-PEG promises a natural and efficient system for anticancer drug delivery to fight gastric cancer.

Carbon Storage of Natural Pine and Oak Pure and Mixed Forests in Hoengseong, Kangwon (횡성지역 천연 소나무와 참나무류 순림 및 혼효임분의 탄소 저장량 추정)

  • Lee, Sue Kyoung;Son, Yowhan;Noh, Nam Jin;Heo, Su Jin;Yoon, Tae Kyung;Lee, Ah Reum;Sarah, Abdul Razak;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • 제98권6호
    • /
    • pp.772-779
    • /
    • 2009
  • This study was conducted to estimate the carbon (C) contents in pure and mixed stands of pine (Pinus densiflora) and oak (Quercus spp.) trees for establishing the C inventory of forest ecosystems. A total of fifteen 20 m${\times}$20 m pure and mixed stands of pine and oak trees were chosen in natural forests in Hoengseong, Kangwon based on the basal area of all trees ${\geq}$ 5 cm DBH: three of 95% of pine and 5% oak trees [pine stand], three of 100% of oak trees [oak stand], and nine of 20 to 70% of pine and 80 to 30% of oak trees [mixed stand]. To estimate C contents in the study stands, biomass in vegetation, forest floor and coarse woody debris (CWD) were calculated and C concentrations in vegetation, forest floor, CWD and soil (0-30 cm) were analyzed. There was no significant difference in vegetation C contents among the stands; 147.6 Mg C/ha for the oak stand, 141.4 Mg C/ha for the pine stand and 115.8 Mg C/ha for the mixed stand. Forest floor C contents were significantly different among the stands (p<0.05); 12.7 Mg/ha for the pine stand, 9.9 Mg/ha for the oak stand, and 8.4 Mg/ha for the mixed stand. However, CWD C contents were not significantly different among the stands (p>0.05); 2.2 Mg/ha for the mixed stand, 1.7 Mg/ha for the oak stand, and 1.1 Mg/ha for the pine stand. Soil C contents up to 30 cm depth were not significantly different among the study stands; 44.4 Mg C/ha for the pine stand, 41.6 Mg C/ha for the mixed stand, and 33.3 Mg C/ha for the oak stand. Total ecosystem C contents were lower in the mixed stand than those in the pure stands, because vegetation C contents which occupied almost total ecosystem C contents were lower in the mixed stand than those in the pure stands; 199.6 Mg C/ha for the pine stand, 192.5 Mg C/ha for the oak stand and 169.1 Mg C/ha for the mixed stand. Lower vegetation C contents in the mixed stand might be influenced by interspecific competition between pine and oak trees and intraspecific competition among the oak trees resulted from high stand density. We suggest that forest management such as thinning to enhance C storage is indispensible for minimizing the competition in forest ecosystems.

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권1호
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Breast Radiotherapy with Mixed Energy Photons; a Model for Optimal Beam Weighting

  • Birgani, Mohammadjavad Tahmasebi;Fatahiasl, Jafar;Hosseini, Seyed Mohammad;Bagheri, Ali;Behrooz, Mohammad Ali;Zabiehzadeh, Mansour;meskani, Reza;Gomari, Maryam Talaei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권17호
    • /
    • pp.7785-7788
    • /
    • 2015
  • Utilization of high energy photons (>10MV) with an optimal weight using a mixed energy technique is a practical way to generate a homogenous dose distribution while maintaining adequate target coverage in intact breast radiotherapy. This study represents a model for estimation of this optimal weight for day to day clinical usage. For this purpose, treatment planning computed tomography scans of thirty-three consecutive early stage breast cancer patients following breast conservation surgery were analyzed. After delineation of the breast clinical target volume (CTV) and placing opposed wedge paired isocenteric tangential portals, dosimeteric calculations were conducted and dose volume histograms (DVHs) were generated, first with pure 6MV photons and then these calculations were repeated ten times with incorporating 18MV photons (ten percent increase in weight per step) in each individual patient. For each calculation two indexes including maximum dose in the breast CTV ($D_{max}$) and the volume of CTV which covered with 95% Isodose line ($V_{CTV,95%IDL}$) were measured according to the DVH data and then normalized values were plotted in a graph. The optimal weight of 18MV photons was defined as the intersection point of $D_{max}$ and $V_{CTV,95%IDL}$ graphs. For creating a model to predict this optimal weight multiple linear regression analysis was used based on some of the breast and tangential field parameters. The best fitting model for prediction of 18MV photons optimal weight in breast radiotherapy using mixed energy technique, incorporated chest wall separation plus central lung distance (Adjusted R2=0.776). In conclusion, this study represents a model for the estimation of optimal beam weighting in breast radiotherapy using mixed photon energy technique for routine day to day clinical usage.

Multi-potential capacity for reinforced concrete members under pure torsion

  • Ju, Hyunjin;Han, Sun-Jin;Kim, Kang Su;Strauss, Alfred;Wu, Wei
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.401-414
    • /
    • 2020
  • Unlike the existing truss models for shear and torsion analysis, in this study, the torsional capacities of reinforced concrete (RC) members were estimated by introducing multi-potential capacity criteria that considered the aggregate interlock, concrete crushing, and spalling of concrete cover. The smeared truss model based on the fixed-angle theory was utilized to obtain the torsional behavior of reinforced concrete member, and the multi-potential capacity criteria were then applied to draw the capacity of the member. In addition, to avoid any iterative calculation in the existing torsional behavior model, a simple strength model was suggested that considers key variables, such as the effective thickness of torsional member, principal stress angle, and strain effect that reduces the resistance of concrete due to large longitudinal tensile strain. The proposed multi-potential capacity concept and the simple strength model were verified by comparing with test results collected from the literature. The study found that the multi-potential capacity could estimate in a rational manner not only the torsional strength but also the failure mode of RC members subjected to torsional moment, by reflecting the reinforcing index in both transverse and longitudinal directions, as well as the sectional and material properties of RC members.

SPECTROSCOPIC AND CHEMOMETRIC ANALYSIS OF SW-NIR SPECTRA OF SUGARS AND FRUITS

  • Golic, Mirta;Walsh, Kerry;Lawson, Peter
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1133-1133
    • /
    • 2001
  • Fruit sweetness, as indexed by total soluble solids (TSS), and fruit acidity are key factors in the description of the fruit eating quality. Our group has been using short wave NIR spectroscopy (SW-NIR; 700-1100 nm) in combination with chemometric methods (PLS and MLR) for the non-invasive determination of the fruit eating quality (1,2). In order to further improve calibration performance, we have investigated SW-NIR spectra of sucrose and D-glucose. In previous reports on the band assignment for these sugars in the 1100-2500 nm spectral region (3-7), it has been established that change in concentration, temperature and physical state of sugars reflects on the shape and position of the spectral bands in the whole NIR region(5-7). The effect of change in concentration and temperature of individual sugar solutions and sugar spiked Juice samples was analysed using combined spectroscopic (derivative, difference, 2D spectroscopy) and linear regression chemometric (PLS, MLR) techniques. The results have been compared with the spectral data of a range of fruit types, varying in TSS content and temperature. In the 800-950 nm spectral region, the B-coefficients for apples, peaches and nectarines resemble those generated in a calibration of pure sucrose in water (Fig. 1). As expected, these fruits exhibit better calibration and prediction results than those in which the B-coefficients were poorly related to those for sugar.(Figure omitted).

  • PDF

A Study of Bulk Modulus of Beryl Using Water as a Pressure-Transmitting Medium (물을 압력 매개체로 이용한 녹주석의 체적탄성률 연구)

  • Hwang, Gil Chan;Kim, Hyunho;Lee, Yongjae
    • Journal of the Mineralogical Society of Korea
    • /
    • 제30권3호
    • /
    • pp.83-91
    • /
    • 2017
  • In-situ high-pressure and ex-situ high temperature-pressure experiments of natural beryl ($Be_3Al_2Si_6O_{18}$, P6/mcc) from two different localities (beryl-A and beryl-B) were studied using pure water as pressure transmitting medium. Compared to the previous study using a mixture of methanol:ethanol medium in 4 : 1 by volume, pressure- and temperature-induced chemical and structural changes under water medium are expected to be different. The derived bulk moduli are 111(7) GPa, $K{_0}^{\prime}=73(7)$; 110(9) GPa, $K{_0}^{\prime}=65(8)$ for beryl-A and beryl-B, respectively. We observe densifications in volume compression, which appear to be attributed to the phase transitions of water to ICE VI and ICE VII around 1.0 GPa and 2.5 GPa, respectively.

New nirS-Harboring Denitrifying Bacteria Isolated from Activated Sludge and Their Denitrifying Functions in Various Cultures

  • LEE, SOO-YOUN;LEE, SANG-HYON;PARK, YONG-KEUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.14-21
    • /
    • 2005
  • By using PCR with nirS gene primers, three nirSharboring denitrifying bacteria (strain N6, strain N23, and strain R13) were newly isolated from activated sludge of a weak municipal wastewater treatment plant. Small-subunit rRNA gene-based analysis indicated that strain N6, strain N23, and strain R13 were closely related to Arthrobacter sp.,Staphylococcus sp., and Bacillus sp., respectively. In an attempt to identify their roles in biological nitrate and nitrite removal from sewage, we investigated their specific denitrification rates (SDNRs) for $NO_-^3$ - and $NO_-^2$ - in various cultures. All purecultures of each isolated nirS-harboring bacterial strain could remove $NO_-^3$ - and $NO_-^2$ - simultaneously in high efficiency, and the carbon requirements for $NO_-^3$ - removal of strain N6 and strain R13 were effectively low at 3.1 and 4.1 g COD/g $NO_3N$, respectively. In the case of mix-cultures of the strains (N6+N23, N6+R13, N23+R13, and N6+N23+R13), their SDNRs for $NO_-^3$ - were also effective, and their carbon requirements for $NO_-^3$ - removal were also effective at 3.0- 3.8 g COD/g NO3N. However, all tested mix-cultures accumulated $NO_-^2$ - in their culture media. On the other hand, the continuous culture of activated sludge mixed with strain N6 showed no significant increase of $NO_-^3$ - removal in comparison with strain N6's pure culture. These results suggest that nitrate and nitrite removal in biological wastewater treatment might be dependent on complicated bacterial interactions, including several effective denitrifying bacteria isolated in this study, rather than the specific bacterial types present and the number of bacterial types in activated sludge.